【題目】命題
方程
表示橢圓,命題
恒成立;
(1)若命題
為真命題,求實數(shù)
的取值范圍;
(2)若命題
為真,求實數(shù)
的取值范圍.
【答案】(1)
;(2)
.
【解析】
(1)根據(jù)方程
表示橢圓,得到
,求解,即可得出結(jié)果;
(2)先由(1),得到命題
等價于
;再由命題
等價于不等式
,
恒成立;得到命題
等價于
;根據(jù)命題
為真,得到命題
為假,命題
為真,進而可求出結(jié)果.
(1)若方程
表示橢圓,則橢圓標(biāo)準(zhǔn)方程為
,
所以只需要
,即
;
即命題
為真命題時,實數(shù)
的取值范圍為![]()
(2)由(1)可知:命題
等價于
;
命題
恒成立,等價于不等式
,
恒成立;
①當(dāng)
時,不等式顯然成立;
②當(dāng)
時,只需
,即
,即![]()
綜上可知:
;即命題
等價于
;
因為命題
為真,所以命題
為假,命題
為真,
即
,解得:
.
即實數(shù)
的取值范圍為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來,移動支付已成為主要支付方式之一.為了解某校學(xué)生上個月A,B兩種移動支付方式的使用情況,從全校所有的1000名學(xué)生中隨機抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:
支付方式 | 不大于2000元 | 大于2000元 |
僅使用A | 27人 | 3人 |
僅使用B | 24人 | 1人 |
(Ⅰ)估計該校學(xué)生中上個月A,B兩種支付方式都使用的人數(shù);
(Ⅱ)從樣本僅使用B的學(xué)生中隨機抽取1人,求該學(xué)生上個月支付金額大于2000元的概率;
(Ⅲ)已知上個月樣本學(xué)生的支付方式在本月沒有變化.現(xiàn)從樣本僅使用B的學(xué)生中隨機抽查1人,發(fā)現(xiàn)他本月的支付金額大于2000元.結(jié)合(Ⅱ)的結(jié)果,能否認為樣本僅使用B的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系
中,已知橢圓![]()
,拋物線![]()
的焦點
是
的一個頂點,設(shè)
是
上的動點,且位于第一象限,記
在點
處的切線為
.
(1)求
的值和切線
的方程(用
表示)
(2)設(shè)
與
交于不同的兩點
,線段
的中點為
,直線
與過
且垂直于
軸的直線交于點
.
(i)求證:點
在定直線上;
(ii)設(shè)
與
軸交于點
,記
的面積為
,
的面積為
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,已知圓心在
軸上,半徑為2的圓
位于
軸右側(cè),且與直線
相切.
(1)求圓
的方程;
(2)在圓
上,是否存在點
,使得直線
與圓
相交于不同的兩點
,且
的面積最大?若存在,求出點
的坐標(biāo)及對應(yīng)的
的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCD中,
,
,
,E為AB的中點
將
沿CE折起,使點B到達點F的位置,且平面CEF與平面ADCE所成的二面角為
.
求證:平面
平面AEF;
求直線DF與平面CEF所成角的正弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線
的焦點為F,圓
,點
為拋物線上一動點.已知當(dāng)
的面積為
.
![]()
(I)求拋物線方程;
(II)若
,過P做圓C的兩條切線分別交y軸于M,N兩點,求
面積的最小值,并求出此時P點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某縣畜牧技術(shù)員張三和李四9年來一直對該縣山羊養(yǎng)殖業(yè)的規(guī)模進行跟蹤調(diào)查,張三提供了該縣某山羊養(yǎng)殖場年養(yǎng)殖數(shù)量
單位:萬只
與相應(yīng)年份
序號
的數(shù)據(jù)表和散點圖
如圖所示
,根據(jù)散點圖,發(fā)現(xiàn)y與x有較強的線性相關(guān)關(guān)系,李四提供了該縣山羊養(yǎng)殖場的個數(shù)
單位:個
關(guān)于x的回歸方程
.
年份序號x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
年養(yǎng)殖山羊 |
|
|
|
|
|
|
|
|
|
根據(jù)表中的數(shù)據(jù)和所給統(tǒng)計量,求y關(guān)于x的線性回歸方程
參考統(tǒng)計量:
,
;
試估計:
該縣第一年養(yǎng)殖山羊多少萬只
到第幾年,該縣山羊養(yǎng)殖的數(shù)量與第一年相比縮小了?
附:對于一組數(shù)據(jù)
,
,
,其回歸直線
的斜率和截距的最小二乘估計分別為
,
.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱
中,
平面
,
為
邊上一點,
,
.
![]()
(1)證明:平面
平面
.
(2)若
,試問:
是否與平面
平行?若平行,求三棱錐
的體積;若不平行,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某食品廠為了檢查甲乙兩條自動包裝流水線的生產(chǎn)情況,隨機在這兩條流水線上各抽取40件產(chǎn)品作為樣本稱出它們的質(zhì)量(單位:克),質(zhì)量值落在(495,510]的產(chǎn)品為合格品,否則為不合格品.表是甲流水線樣本頻數(shù)分布表,圖是乙流水線樣本頻率分布直方圖.
![]()
表甲流水線樣本頻數(shù)分布表
產(chǎn)品質(zhì)量/克 | 頻數(shù) |
(490,495] | 6 |
(495,500] | 8 |
(500,505] | 14 |
(505,510] | 8 |
(510,515] | 4 |
(1)若以頻率作為概率,試估計從兩條流水線分別任取1件產(chǎn)品,該產(chǎn)品恰好是合格品的概率分別是多少;
(2)由以上統(tǒng)計數(shù)據(jù)作出2×2列聯(lián)表,并回答能否有95%的把握認為“產(chǎn)品的包裝質(zhì)量與兩條自動包裝流水線的選擇有關(guān)”
χ2![]()
甲流水線 | 乙流水線 | 總計 | |
合格品 | |||
不合格品 | |||
總計 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com