【題目】某縣畜牧技術(shù)員張三和李四9年來一直對該縣山羊養(yǎng)殖業(yè)的規(guī)模進行跟蹤調(diào)查,張三提供了該縣某山羊養(yǎng)殖場年養(yǎng)殖數(shù)量
單位:萬只
與相應(yīng)年份
序號
的數(shù)據(jù)表和散點圖
如圖所示
,根據(jù)散點圖,發(fā)現(xiàn)y與x有較強的線性相關(guān)關(guān)系,李四提供了該縣山羊養(yǎng)殖場的個數(shù)
單位:個
關(guān)于x的回歸方程
.
年份序號x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
年養(yǎng)殖山羊 |
|
|
|
|
|
|
|
|
|
根據(jù)表中的數(shù)據(jù)和所給統(tǒng)計量,求y關(guān)于x的線性回歸方程
參考統(tǒng)計量:
,
;
試估計:
該縣第一年養(yǎng)殖山羊多少萬只
到第幾年,該縣山羊養(yǎng)殖的數(shù)量與第一年相比縮小了?
附:對于一組數(shù)據(jù)
,
,
,其回歸直線
的斜率和截距的最小二乘估計分別為
,
.
![]()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)求曲線
的斜率為1的切線方程;
(Ⅱ)當(dāng)
時,求證:
;
(Ⅲ)設(shè)
,記
在區(qū)間
上的最大值為M(a),當(dāng)M(a)最小時,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題,其中正確命題有( )
A.空間任意三個不共面的向量都可以作為一個基底
B.已知向量
,則
與任何向量都不能構(gòu)成空間的一個基底
C.
是空間四點,若
不能構(gòu)成空間的一個基底,那么
共面
D.已知向量
組是空間的一個基底,若
,則
也是空間的一個基底
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
,
,三個函數(shù)的定義域均為集合
.
(1)若
,試判斷集合
與
的關(guān)系,并說明理由;
(2)記
,是否存在
,使得對任意的實數(shù)
,函數(shù)
有且僅有兩個零點?若存在,求出滿足條件的最小正整數(shù)
;若不存在,說明理由.(以下數(shù)據(jù)供參考:
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓
的左右焦點分別為
,
為坐標(biāo)原點,以下說法正確的是( )
A.過點
的直線與橢圓
交于
,
兩點,則
的周長為
.
B.橢圓
上存在點
,使得
.
C.橢圓
的離心率為![]()
D.
為橢圓
一點,
為圓
上一點,則點
,
的最大距離為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
①命題“若
,則
”的否命題為“若
,則
”;
②“
”是“
”的必要不充分條件;
③
命題“,使得
”的否定是:“
,均有
”;
④命題“若
,則
”的逆否命題為真命題
其中所有正確命題的序號是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在五邊形
中,
,
,
為
的中點,
.現(xiàn)把此五邊形
沿
折成一個
的二面角.
![]()
(1)求證:直線
平面
;
(2)求二面角
的平面角的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從甲、乙兩種樹苗中各抽測了10株樹苗的高度,其莖葉圖如圖.根據(jù)莖葉圖,下列描述正確的是( )
![]()
A.甲種樹苗的平均高度大于乙種樹苗的平均高度,且甲種樹苗比乙種樹苗長得整齊
B.甲種樹苗的平均高度大于乙種樹苗的平均高度,但乙種樹苗比甲種樹苗長得整齊
C.乙種樹苗的平均高度大于甲種樹苗的平均高度,且乙種樹苗比甲種樹苗長得整齊
D.乙種樹苗的平均高度大于甲種樹苗的平均高度,但甲種樹苗比乙種樹苗長得整齊
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題10分)選修4—4:坐標(biāo)系與參數(shù)方程
已知曲線C1的參數(shù)方程為
(t為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2sinθ。
(Ⅰ)把C1的參數(shù)方程化為極坐標(biāo)方程;
(Ⅱ)求C1與C2交點的極坐標(biāo)(ρ≥0,0≤θ<2π)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com