欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

14.設(shè)${a_n}={n^2}-2kn+6$(n∈N*,k∈R)
(1)證明:k≤1是{an}為遞增數(shù)列的充分不必要條件;
(2)若$?n∈{N^*},\frac{a_n}{n}≥1$,求k的取值范圍.

分析 (1)an+1-an>0,解得k<$\frac{2n+1}{2}$,進而證明.
(2)$?n∈{N^*},\frac{a_n}{n}≥1$,可得$n+\frac{6}{n}$≥2k+1,利用數(shù)列的單調(diào)性即可得出.

解答 (1)證明:an+1-an=(n+1)2-2k(n+1)+6-[n2-2kn+6]=2n+1-2k>0,解得k<$\frac{2n+1}{2}$,
∴k<$\frac{3}{2}$.
∴k≤1是{an}為遞增數(shù)列的充分不必要條件;
(2)解:∵$?n∈{N^*},\frac{a_n}{n}≥1$,
∴$n+\frac{6}{n}$-2k≥1,即$n+\frac{6}{n}$≥2k+1,
∵$n+\frac{6}{n}$≥5,
∴2k+1≤5,
∴k≤2.
∴k的取值范圍是k≤2.

點評 本題考查了數(shù)列的單調(diào)性、充要條件的判定、恒成立問題,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)$f(x)=\left\{\begin{array}{l}{2^{-x}}+1,x≤0\\{log_3}x+ax,x>0\end{array}\right.$,若f(f(-1))>4a,則實數(shù)a的取值范圍是( 。
A.(-∞,1)B.(-∞,0)C.$(-∞,-\frac{1}{5})$D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知向量$\overrightarrow a$,$\overrightarrow b$滿足$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=1$且$({\overrightarrow a+\overrightarrow b})⊥\overrightarrow b$,則$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{2}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.長方體ABCD-A1B1C1D1中,AB=BC=2a,AA1=a,E和F分別是A1B1和BB1的中點,求:
(1)EF和AD1所成角的正弦值;
(2)AC1和B1C所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.當-1≤x≤1,函數(shù)y=2x-2的值域為( 。
A.[-$\frac{3}{2}$,0]B.[0,$\frac{3}{2}$]C.[-1,0]D.[-$\frac{3}{2}$,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知函數(shù)f(x)=x3+ax2+(2a-3)x-1.
(1)若f(x)的單調(diào)減區(qū)間為(-1,1),則a的取值集合為0;
(2)若f(x)在區(qū)間(-1,1)內(nèi)單凋遞減,則a的取值集合為[0,3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.小軍旅行箱的密碼是一個六位數(shù),由于他忘記了密碼的末位數(shù)字,則小軍能一次打開該旅行箱的概率是( 。
A.$\frac{1}{10}$B.$\frac{1}{9}$C.$\frac{1}{6}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知方程x+$\frac{{e}^{2}}{x}$+m=0有大于0的實數(shù)解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.如圖,將矩形紙片ABCD(其中$AB=\sqrt{3}$,BC=1)沿對角線AC折起后,使得異面直線BC⊥AD,則此時異面直線AB和CD所成的角的余弦值是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步練習冊答案