已知四邊形
滿(mǎn)足
∥
,
,
是
的中點(diǎn),將
沿著
翻折成
,使面
面
,
為
的中點(diǎn). ![]()
(Ⅰ)求四棱
的體積;(Ⅱ)證明:
∥面
;
(Ⅲ)求面
與面
所成二面角的余弦值.
(Ⅰ)
(Ⅱ)連接
交
于
,連接
,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/96/d/rrcmx2.png" style="vertical-align:middle;" />為菱形,
,又
為
的中點(diǎn),所以
∥
,所以
∥面![]()
(Ⅲ)二面角的余弦值為![]()
解析
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題12分)
如圖的幾何體中,
平面
,
平面
,△
為等邊三角形,
,
為
的中點(diǎn).![]()
(1)求證:
平面
;
(2)求證:平面
平面
;
(3)求此幾何體的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分14分)
如圖,沿等腰直角三角形
的中位線(xiàn)
,將平面
折起,平面
⊥平面
,得到四棱錐
,
,設(shè)
、
的中點(diǎn)分別為
、
,![]()
![]()
(1)求證:平面
⊥平面![]()
(2)求證:
(3)求平面
與平面
所成銳二面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分14分)已知四邊形
滿(mǎn)足
∥
,
,
是
的中點(diǎn),將
沿著
翻折成
,使面
面
,
為
的中點(diǎn). ![]()
(Ⅰ)求四棱錐
的體積;(Ⅱ)證明:
∥面
;
(Ⅲ)求面
與面
所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)如圖所示多面體中,
⊥平面
,
為平行四邊形,
分別為
的中點(diǎn),
,
,![]()
.
(1)求證:
∥平面
;
(2)若∠
=90°,求證
;
(3)若∠
=120°,求該多面體的體積.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知高為3的棱柱ABC-A1B1C1的底面是邊長(zhǎng)為1的正三角形,求三棱錐B1-ABC的體積。![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直三棱柱
中,
、
分別是
、
的中點(diǎn),點(diǎn)
在
上,
。 ![]()
求證:(1)EF∥平面ABC;
(2)平面![]()
平面
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com