| A. | $\frac{{\sqrt{5}+1}}{2}$ | B. | $\frac{{\sqrt{5}+3}}{2}$ | C. | $\frac{{\sqrt{3}+1}}{2}$ | D. | $\frac{3}{2}$ |
分析 設出切點坐標,通過導數(shù)求出切線方程的斜率,利用斜率相等列出方程,即可求出切點坐標,然后求解雙曲線的離心率.
解答 解:設P(m,$\sqrt{m}$),函數(shù)y=$\sqrt{x}$的導數(shù)為:y′=$\frac{1}{2\sqrt{x}}$,∴切線的斜率為$\frac{1}{2\sqrt{m}}$,
又∵在點P處的切線過雙曲線左焦點F(-1,0),∴$\frac{1}{2\sqrt{m}}$=$\frac{\sqrt{m}}{m+1}$,解得m=1,
∴P(1,1),
雙曲線的左焦點F1(-1,0),則雙曲線的右焦點F2(1,0),既c=1.
則|PF1|-|PF2|=2a,即$\sqrt{4+1}-\sqrt{0+1}$=2a
解得a=$\frac{\sqrt{5}-1}{2}$
所以離心率e=$\frac{c}{a}$=$\frac{\sqrt{5}+1}{2}$,
故選A.
點評 本小題主要考查過曲線外一點作曲線切線的基本方法,結合雙曲線的標準方程與離心率,對考生的運算求解能力和推理論證能力提出較高要求.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | -$\frac{\sqrt{2}}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 3 | B. | 4 | C. | 5 | D. | 與P的位置有關 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | K 2>3.841 | B. | K 2<3.841 | C. | K 2>6.635 | D. | K 2<6.635 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com