欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

14.已知點M,N是拋物線y=4x2上不同的兩點,F(xiàn)為拋物線的焦點,且滿足$∠MFN=\frac{2π}{3}$,弦MN的中點P到直線l:$y=-\frac{1}{16}$的距離記為d,若|MN|2=λ•d2,則λ的最小值為(  )
A.3B.$\sqrt{3}$C.$1+\sqrt{3}$D.4

分析 求得拋物線的焦點和準線方程,設|MF|=a,|NF|=b,由∠MFN=120°,運用余弦定理可得|MN|,運用拋物線的定義和中位線定理可得d=$\frac{1}{2}$(|MF|+|NF|)=$\frac{1}{2}$(a+b),運用基本不等式計算即可得到所求最小值.

解答 解:拋物線y=4x2的焦點F(0,$\frac{1}{16}$),準線為y=-$\frac{1}{16}$,
設|MF|=a,|NF|=b,由∠MFN=120°,
可得|MN|2=|MF|2+|NF|2-2|MF|•|NF|•cos∠MFN=a2+b2+ab,
由拋物線的定義可得M到準線的距離為|MF|,N到準線的距離為|NF|,
由梯形的中位線定理可得d=$\frac{1}{2}$(|MF|+|NF|)=$\frac{1}{2}$(a+b),
由|MN|2=λ•d2,可得$\frac{1}{4}$λ=1-$\frac{ab}{(a+b)^{2}}$≥1-$\frac{1}{4}$=$\frac{3}{4}$,
可得λ≥3,當且僅當a=b時,取得最小值3,
故選:A

點評 本題考查拋物線的定義、方程和性質,考查余弦定理和基本不等式的運用:求最值,考查化簡整理的運算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=4x2-kx-8,x∈[5,20]
(Ⅰ)若函數(shù)f(x)在[5,20]上具有單調性,求實數(shù)k的取值范圍;
(Ⅱ)若函數(shù)f(x)在[5,20]上恒大于零,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.在△ABC中,角A、B、C的對邊分別為a、b、c,若  acosB+bcosA=csinA,則△ABC的形狀為直角三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知a>2,函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{a}x+x-3(x>0)}\\{x-(\frac{1}{a})^{x}+3(x≤0)}\end{array}\right.$,若f(x)有兩個零點分別為x1,x2,則( 。
A.?a>2,x1+x2=0B.?a>2,x1+x2=1C.?a>2,|x1-x2|=2D.?a>2,|x1-x2|=3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.設函數(shù)f(x)的定義域為D,若存在非零實數(shù)l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的l高調函數(shù).如果定義域是[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調函數(shù),那么實數(shù)m的取值范圍是m≥2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知集合A={x|x=3n+1,n∈N},B={6,7,8,9,10,11},C=A∩B,則集合C的子集個數(shù)為( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.在復平面內,復數(shù)z=$\frac{i}{1+2i}$的共軛復數(shù)對應的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知復數(shù)z=$\frac{3i+1}{1-i}$,則z的虛部是2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知命題“?a,b∈R,如果ab>0,則a>0”,則它的逆否命題是( 。
A.?a,b∈R,如果ab<0,則a<0B.?a,b∈R,如果a≤0,則ab≤0
C.?a,b∈R,如果ab<0,則a<0D.?a,b∈R,如果a≤0,則ab≤0

查看答案和解析>>

同步練習冊答案