科目: 來源: 題型:解答題
如圖,已知四棱錐P-ABCD的底面為菱形,且∠ABC =60°,AB=PC=2,AP=BP=
.![]()
(Ⅰ)求證:平面PAB⊥平面ABCD ;
(Ⅱ)求二面角A-PC-D的平面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:解答題
在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,側(cè)棱AA1⊥面ABC,D、E分別是棱A1B1、AA1的中點,點F在棱AB上,且![]()
![]()
(I)求證:EF∥平面BDC1;
(II)求二面角E-BC1-D的余弦值
查看答案和解析>>
科目: 來源: 題型:解答題
在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1.![]()
(1)求異面直線B1C1與AC所成角的大;
(2)若該直三棱柱ABC-A1B1C1的體積為
,求點A到平面A1BC的距離.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,在四棱錐S-ABCD中,底面ABCD是矩形,SA
底面ABCD,SA=AD,點M是SD的中點,AN
SC且交SC于點N.![]()
(Ⅰ)求證:SB∥平面ACM;
(Ⅱ)求證:平面SAC
平面AMN.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,四棱錐S-ABCD中,SD
底面ABCD,AB//DC,AD
DC,AB=AD=1,DC=SD=2,E為棱SB上任一點.![]()
(Ⅰ)求證:無論E點取在何處恒有
;
(Ⅱ)設(shè)
,當(dāng)平面EDC
平面SBC時,求
的值;
(Ⅲ)在(Ⅱ)的條件下求二面角
的大。
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,四邊形ABCD為正方形,PA
平面ABCD,且AD= 2PA,E、F、G、H分別是線段PA、PD、CD、BC的中點.![]()
(I)求證:BC∥平面EFG;
(II)求證:DH
平面AEG.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com