科目: 來源: 題型:
如圖,已知橢圓C:
+
=1(a>b>0)的離心率e=
,短軸右端點(diǎn)為A,M(1,0)為線段OA的中點(diǎn).
(1)求橢圓C的方程;
(2)過點(diǎn)M任作一條直線與橢圓C相交于兩點(diǎn)P、Q,試問在x軸上是否存在定點(diǎn)N,使得∠PNM=∠QNM?若存在,求出點(diǎn)N的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
已知點(diǎn)E(m,0)為拋物線y2=4x內(nèi)一個(gè)定點(diǎn),過E斜率分別為k1、k2的兩條直線交拋物線于點(diǎn)A、B、C、D,且M、N分別是AB、CD的中點(diǎn).
(1)若m=1,k1k2=-1,求三角形EMN面積的最小值;
(2)若k1+k2=1,求證:直線MN過定點(diǎn).
![]()
查看答案和解析>>
科目: 來源: 題型:
如圖所示,在△DEM中,
=(0,-8),N在y軸上,且
點(diǎn)E在x軸上移動(dòng).
(1)求點(diǎn)M的軌跡方程;
(2)過點(diǎn)F(0,1)作互相垂直的兩條直線l1、l2,l1與點(diǎn)M的軌跡交于點(diǎn)A、B,l2與點(diǎn)M的軌跡交于點(diǎn)C、Q,求
的最小值.
查看答案和解析>>
科目: 來源: 題型:
點(diǎn)A、B分別為橢圓
+
=1長(zhǎng)軸的左、右端點(diǎn),點(diǎn)F是橢圓的右焦點(diǎn),點(diǎn)P在橢圓上,且位于x軸上方,PA⊥PF.
(1)求點(diǎn)P的坐標(biāo);
(2)設(shè)M是橢圓長(zhǎng)軸AB上的一點(diǎn),M到直線AP的距離等于|MB|,求橢圓上的點(diǎn)到點(diǎn)M的距離d的最小值.
查看答案和解析>>
科目: 來源: 題型:
已知橢圓C:
+
=1(a>b>0)的離心率為
,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)在的三角形的面積為
.
(1)求橢圓C的方程;
(2)已知?jiǎng)又本y=k(x+1)與橢圓C相交于A、B兩點(diǎn).
①若線段AB中點(diǎn)的橫坐標(biāo)為-
,求斜率k的值;
②若點(diǎn)M(-
,0),求證:
為定值.
查看答案和解析>>
科目: 來源: 題型:
已知拋物線y2=4x,過點(diǎn)M(0,2)的直線l與拋物線交于A、B兩點(diǎn),且直線l與x軸交于點(diǎn)C.
(1)求證:|MA|,|MC|,|MB|成等比數(shù)列;
(2)設(shè)
,試問α+β是否為定值,若是,求出此定值,若不是,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
設(shè)A,B分別為雙曲線
-
=1(a>0,b>0)的左,右頂點(diǎn),雙曲線的實(shí)軸長(zhǎng)為4
,焦點(diǎn)到漸近線的距離為
.
(1)求雙曲線的方程;
(2)已知直線y=
x-2與雙曲線的右支交于M、N兩點(diǎn),且在雙曲線的右支上存在點(diǎn)D,使得
,求t的值及點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
過拋物線C:x2=2py(p>0)的焦點(diǎn)F作直線l與拋物線C交于A、B兩點(diǎn),當(dāng)點(diǎn)A的縱坐標(biāo)為1時(shí),|AF|=2.
(1)求拋物線C的方程;
(2)若直線l的斜率為2,問拋物線C上是否存在一點(diǎn)M,使得MA⊥MB,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
直線l:x-y=0與橢圓
+y2=1相交A、B兩點(diǎn),點(diǎn)C是橢圓上的動(dòng)點(diǎn),則△ABC面積的最大值為________.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com