科目: 來源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)镽.a,b∈R,若此函數(shù)同時(shí)滿足:
①當(dāng)a+b=0時(shí),有f(a)+f(b)=0;
②當(dāng)a+b>0時(shí),有f(a)+f(b)>0,
則稱函數(shù)f(x)為Ω函數(shù).
在下列函數(shù)中:
①y=x+sinx;
②y=3x﹣(
)x;
③y=
是Ω函數(shù)的為 . (填出所有符合要求的函數(shù)序號(hào))
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù)f(x)=
(a>0,且a≠1).
①若a=
,則函數(shù)f(x)的值域?yàn)?/span>;
②若f(x)在R上是增函數(shù),則a的取值范圍是 .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,A是函數(shù)f(x)=2x的圖象上的動(dòng)點(diǎn),過點(diǎn)A作直線平行于x軸,交函數(shù)g(x)=2x+2的圖象于點(diǎn)B,若函數(shù)f(x)=2x的圖象上存在點(diǎn)C使得△ABC為等邊三角形,則稱A為函數(shù)f(x)=2x上的好位置點(diǎn).函數(shù)f(x)=2x上的好位置點(diǎn)的個(gè)數(shù)為( ) ![]()
A.0
B.1
C.2
D.大于2
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=cos4x+sin2x,下列結(jié)論中錯(cuò)誤的是( )
A.f(x)是偶函數(shù)
B.函f(x)最小值為 ![]()
C.
是函f(x)的一個(gè)周期
D.函f(x)在(0,
)內(nèi)是減函數(shù)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=alnx+bx(a,b∈R)在點(diǎn)(1,f(1))處的切線方程為x﹣2y﹣2=0.
(1)求a,b的值;
(2)當(dāng)x>1時(shí),f(x)+
<0恒成立,求實(shí)數(shù)k的取值范圍;
(3)證明:當(dāng)n∈N* , 且n≥2時(shí),
+
+…+
>
.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知曲線C的極坐標(biāo)方程是ρ=2cosθ,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線L的參數(shù)方程是
(t為參數(shù)).
(1)求曲線C的直角坐標(biāo)方程和直線L的普通方程;
(2)設(shè)點(diǎn)P(m,0),若直線L與曲線C交于A,B兩點(diǎn),且|PA||PB|=1,求實(shí)數(shù)m的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點(diǎn)
是圓
:
上任意一點(diǎn),點(diǎn)
與圓心
關(guān)于原點(diǎn)對(duì)稱.線段
的中垂線與
交于
點(diǎn).
(1)求動(dòng)點(diǎn)
的軌跡方程
;
(2)設(shè)點(diǎn)
,若直線
軸且與曲線
交于另一點(diǎn)
,直線
與直線
交于點(diǎn)
,證明:點(diǎn)
恒在曲線
上,并求
面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】甲、乙兩家銷售公司擬各招聘一名產(chǎn)品推銷員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷售一件產(chǎn)品提成1元; 乙公司規(guī)定底薪120元,日銷售量不超過45件沒有提成,超過45件的部分每件提成8元.
(I)請(qǐng)將兩家公司各一名推銷員的日工資
(單位: 元) 分別表示為日銷售件數(shù)
的函數(shù)關(guān)系式;
(II)從兩家公司各隨機(jī)選取一名推銷員,對(duì)他們過去100天的銷售情況進(jìn)行統(tǒng)計(jì),得到如下條形圖。若記甲公司該推銷員的日工資為
,乙公司該推銷員的日工資為
(單位: 元),將該頻率視為概率,請(qǐng)回答下面問題:
某大學(xué)畢業(yè)生擬到兩家公司中的一家應(yīng)聘推銷員工作,如果僅從日均收入的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說明理由.
![]()
【答案】(I)見解析; (Ⅱ)見解析.
【解析】分析:(I)依題意可得甲公司一名推銷員的工資與銷售件數(shù)的關(guān)系是一次函數(shù)的關(guān)系式,而乙公司是分段函數(shù)的關(guān)系式,由此解得;(Ⅱ)分別根據(jù)條形圖求得甲、乙公司一名推銷員的日工資的分布列,從而可分別求得數(shù)學(xué)期望,進(jìn)而可得結(jié)論.
詳解:(I)由題意得,甲公司一名推銷員的日工資
(單位:元) 與銷售件數(shù)
的關(guān)系式為:
.
乙公司一名推銷員的日工資
(單位: 元) 與銷售件數(shù)
的關(guān)系式為: ![]()
(Ⅱ)記甲公司一名推銷員的日工資為
(單位: 元),由條形圖可得
的分布列為
| 122 | 124 | 126 | 128 | 130 |
| 0.2 | 0.4 | 0.2 | 0.1 | 0.1 |
記乙公司一名推銷員的日工資為
(單位: 元),由條形圖可得
的分布列為
| 120 | 128 | 144 | 160 |
| 0.2 | 0.3 | 0.4 | 0.1 |
∴![]()
∴僅從日均收入的角度考慮,我會(huì)選擇去乙公司.
點(diǎn)睛:求解離散型隨機(jī)變量的數(shù)學(xué)期望的一般步驟為:
第一步是“判斷取值”,即判斷隨機(jī)變量的所有可能取值,以及取每個(gè)值所表示的意義;
第二步是“探求概率”,即利用排列組合,枚舉法,概率公式,求出隨機(jī)變量取每個(gè)值時(shí)的概率;
第三步是“寫分布列”,即按規(guī)范形式寫出分布列,并注意用分布列的性質(zhì)檢驗(yàn)所求的分布列或某事件的概率是否正確;
第四步是“求期望值”,一般利用離散型隨機(jī)變量的數(shù)學(xué)期望的定義求期望的值
【題型】解答題
【結(jié)束】
19
【題目】如圖,在四棱錐
中,底面
為菱形,
平面
,
,
,
,
分別是
,
的中點(diǎn).
![]()
(1)證明:
;
(2)設(shè)
為線段
上的動(dòng)點(diǎn),若線段
長(zhǎng)的最小值為
,求二面角
的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,經(jīng)過點(diǎn)
且斜率為
的直線
與橢圓
有兩個(gè)不同的交點(diǎn)
和
.
(1)求
的取值范圍;
(2)設(shè)橢圓與
軸正半軸、
軸正半軸的交點(diǎn)分別為
,是否存在常數(shù)
,使得向量
與
共線?如果存在,求
值;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com