科目: 來源: 題型:
【題目】已知橢圓
:
的左、右焦點分別為
,
,若橢圓經(jīng)過點
,且
的面積為
.
(1)求橢圓
的標準方程;
(2)設斜率為
的直線
與以原點為圓心,半徑為
的圓交于
,
兩點,與橢圓
交于
,
兩點,且
,當
取得最小值時,求直線
的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著高等級公路的迅速發(fā)展,公路綠化受到高度重視,需要大量各種苗木.某苗圃培植場對100棵“天竺桂”的移栽成活量
(單位:棵)與在前三個月內(nèi)澆水次數(shù)
間的關系進行研究,根據(jù)以往的記錄,整理相關的數(shù)據(jù)信息如圖所示:
![]()
(1)結合圖中前4個矩形提供的數(shù)據(jù),利用最小二乘法求
關于
的回歸直線方程;
(2)用
表示(1)中所求的回歸直線方程得到的100棵“天竺桂”的移栽成活量的估計值,當圖中余下的矩形對應的數(shù)據(jù)組
的殘差的絕對值
,則回歸直線方程有參考價值,試問:(1)中所得到的回歸直線方程有參考價值嗎?
(3)預測100棵“天竺桂”移栽后全部成活時,在前三個月內(nèi)澆水的最佳次數(shù).
附:回歸直線方程為
,其中
,
.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列
滿足
,
,其中
.
(1)設
,求證:數(shù)列
是等差數(shù)列,并求出
的通項公式;
(2)設
,數(shù)列
的前
項和為
,是否存在正整數(shù)
,使得
對于
恒成立,若存在,求出
的最小值,若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】橢圓
:
的離心率為
,過其右焦點
與長軸垂直的直線與橢圓在第一象限相交于點
,
.
(1)求橢圓
的標準方程;
(2)設橢圓
的左頂點為
,右頂點為
,點
是橢圓上的動點,且點
與點
,
不重合,直線
與直線
相交于點
,直線
與直線
相交于點
,求證:以線段
為直徑的圓恒過定點.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著我國經(jīng)濟的快速發(fā)展,民用汽車的保有量也迅速增長.機動車保有量的發(fā)展影響到環(huán)境質量、交通安全、道路建設等諸多方面.在我國,尤其是大中型城市,機動車已成為城市空氣污染的重要來源.因此,合理預測機動車保有量是未來進行機動車污染防治規(guī)劃、道路發(fā)展規(guī)劃等的重要前提.從2012年到2016年,根據(jù)“云南省某市國民經(jīng)濟和社會發(fā)展統(tǒng)計公報”中公布的數(shù)據(jù),該市機動車保有量數(shù)據(jù)如表所示.
年份 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代碼 | 1 | 2 | 3 | 4 | 5 |
機動車保有量 | 169 | 181 | 196 | 215 | 230 |
![]()
(1)在圖所給的坐標系中作出數(shù)據(jù)對應的散點圖;
(2)建立機動車保有量
關于年份代碼
的回歸方程;
(3)按照當前的變化趨勢,預測2017年該市機動車保有量.
附注:回歸直線方程
中的斜率和截距的最小二乘估計公式分別為:
,
.
查看答案和解析>>
科目: 來源: 題型:
【題目】(本小題滿分13分)已知動圓
過定點
且與
軸截得的弦
的長為
.
(Ⅰ)求動圓圓心
的軌跡
的方程;
(Ⅱ)已知點
,動直線
和坐標軸不垂直,且與軌跡
相交于
兩點,試問:在
軸上是否存在一定點
,使直線
過點
,且使得直線
,
,
的斜率依次成等差數(shù)列?若存在,請求出定點
的坐標;否則,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知f(x)=(1+x)m+(1+2x)n(m,n∈N*)的展開式中x的系數(shù)為11.
(1)求x2的系數(shù)取最小值時n的值;
(2)當x2的系數(shù)取得最小值時,求f(x)展開式中x的奇次冪項的系數(shù)之和.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知矩陣
將直線l:x+y-1=0變換成直線l′.
(1)求直線l′的方程;
(2)判斷矩陣A是否可逆?若可逆,求出矩陣A的逆矩陣A-1;若不可逆,請說明理由.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com