科目: 來源: 題型:
【題目】已知函數(shù)f(x)=sin2x﹣cos2x﹣2
sinxcosx(x∈R).
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[
,
]上的最大值和最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】2018年元旦期間,某運動服裝專賣店舉辦了一次有獎促銷活動,消費每超過400元均可參加1次抽獎活動,抽獎方案有兩種,顧客只能選擇其中的一種.
方案一:顧客轉(zhuǎn)動十二等分且質(zhì)地均勻的圓形轉(zhuǎn)盤(如圖),轉(zhuǎn)盤停止轉(zhuǎn)動時指針指向哪個扇形區(qū)域,則顧客可直接獲得該區(qū)域?qū)骖~(單位:元)的現(xiàn)金優(yōu)惠,且允許顧客轉(zhuǎn)動3次.
方案二:顧客轉(zhuǎn)動十二等分且質(zhì)地均勻的圓形轉(zhuǎn)盤(如圖〕,轉(zhuǎn)盤停止轉(zhuǎn)動時指針若指向陰影部分,則未中獎,若指向白色區(qū)域,則顧客可直接獲得40元現(xiàn)金,且允許顧客轉(zhuǎn)動3次.
![]()
(1)若兩位顧客均獲得1次抽獎機會,且都選擇抽獎方案一,試求這兩位顧客均獲得180元現(xiàn)金優(yōu)惠的概率;
(2)若某顧客恰好獲得1次抽獎機會.
①試分別計算他選擇兩種抽獎方案最終獲得現(xiàn)金獎勵的數(shù)學期望;
②從概率的角度比較①中該顧客選擇哪一種抽獎方案更合算?
查看答案和解析>>
科目: 來源: 題型:
【題目】定義在
上的函數(shù)
若滿足:
,且
,則稱函數(shù)
為“
指向
的完美對稱函數(shù)”.已知
是“1指向2的完美對稱函數(shù)”,且當
時,
.若函數(shù)
在區(qū)間
上恰有5個零點,則實數(shù)
的取值范圍為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】α,β是兩個不重合的平面,在下列條件中,可判斷平面α,β平行的是( 。
A. m,n是平面
內(nèi)兩條直線,且
,![]()
B.
內(nèi)不共線的三點到
的距離相等
C.
,
都垂直于平面![]()
D. m,n是兩條異面直線,
,
,且
,![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】設數(shù)列{an}的前n項和為Sn,對任意n∈N*總有2Sn=an2+n,且an<an+1.若對任意n∈N*,θ∈R,不等式
λ(n+2)恒成立,求實數(shù)λ的最小值( )
A.1
B.2C.1D.![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】下列說法正確的是( )
A. 有兩個平面互相平行,其余各面都是平行四邊形的多面體是棱柱
B. 四棱錐的四個側(cè)面都可以是直角三角形
C. 有兩個平面互相平行,其余各面都是梯形的多面體是棱臺
D. 棱臺的各側(cè)棱延長后不一定交于一點
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系
中,曲線
的方程是:
,以坐標原點為極點,
軸正半軸為極軸建立極坐標系.
(1)求曲線
的極坐標方程;
(2)設過原點的直線
與曲線
交于
,
兩點,且
,求直線
的斜率.
查看答案和解析>>
科目: 來源: 題型:
【題目】《九章算術》是我國古代內(nèi)容極為豐富的數(shù)學名著,書中有一個“引葭赴岸”問題:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,適與岸齊.問水深、葭長各幾何?”其意思為“今有水池1丈見方(即
尺),蘆葦生長在水的中央,長出水面的部分為1尺.將蘆葦向池岸牽引,恰巧與水岸齊接(如圖所示).試問水深、蘆葦?shù)拈L度各是多少?假設
,現(xiàn)有下述四個結(jié)論:
①水深為12尺;②蘆葦長為15尺;③
;④
.
其中所有正確結(jié)論的編號是( )
![]()
A.①③B.①③④C.①④D.②③④
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com