科目: 來源: 題型:
【題目】已知函數(shù)f(x)的定義域為R,當x>0時滿足:①f(x)﹣2f(﹣x)=0;②對任意x1>0,x2>0,x1≠x2有(x1﹣x2)(f(x1)﹣f(x2))>0恒成立:③f(4)=2f(2)=2,則不等式x[f(x)﹣1]>0的解集為_____(用區(qū)間表示)
查看答案和解析>>
科目: 來源: 題型:
【題目】公元263年左右,我國數(shù)學家劉徽發(fā)現(xiàn),當圓內(nèi)接多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,由此創(chuàng)立了割圓術,利用割圓術劉徽得到了圓周率精確到小數(shù)點后面兩位的近似值3.14,這就是著名的徽率.如圖是利用劉徽的割圓術設計的程序框圖,則輸出的n值為 (參考數(shù)據(jù):
,
,
)
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】袋中裝有紅球3個、白球2個、黑球1個,從中任取2個,則互斥而不對立的兩個事件是
![]()
A. 至少有一個白球;都是白球 B. 至少有一個白球;至少有一個紅球
C. 至少有一個白球;紅、黑球各一個 D. 恰有一個白球;一個白球一個黑球
查看答案和解析>>
科目: 來源: 題型:
【題目】已知斜三棱柱ABC-A1B1C1的側(cè)面A1ACC1與底面ABC垂直,∠ABC=900,BC=2,AC=
,且AA1⊥A1C,AA1=A1C.
(Ⅰ)求側(cè)棱A1A與底面ABC所成角的大小;
(Ⅱ)求側(cè)面A1ABB1與底面ABC所成二面角的大小。
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
(
,
),
(
).
(1)如果
是關于
的不等式
的解,求實數(shù)
的取值范圍;
(2)判斷
在
和
的單調(diào)性,并說明理由;
(3)證明:函數(shù)
存在零點q,使得
成立的充要條件是
.
查看答案和解析>>
科目: 來源: 題型:
【題目】美國對中國芯片的技術封鎖激發(fā)了中國“芯”的研究熱潮.某公司研發(fā)的
,
兩種芯片都已經(jīng)獲得成功.該公司研發(fā)芯片已經(jīng)耗費資金
千萬元,現(xiàn)在準備投入資金進行生產(chǎn).經(jīng)市場調(diào)查與預測,生產(chǎn)
芯片的毛收入與投入的資金成正比,已知每投入
千萬元,公司獲得毛收入
千萬元;生產(chǎn)
芯片的毛收入
(千萬元)與投入的資金
(千萬元)的函數(shù)關系為
,其圖像如圖所示.
![]()
(1)試分別求出生產(chǎn)
,
兩種芯片的毛收入
(千萬元)與投入資金
(千萬元)的函數(shù)關系式;
(2)現(xiàn)在公司準備投入
億元資金同時生產(chǎn)
,
兩種芯片,求可以獲得的最大利潤是多少.
查看答案和解析>>
科目: 來源: 題型:
【題目】“圓材埋壁”是《九章算術》中的一個問題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,學會一寸,鋸道長一尺,問徑幾何?”其意為:今有一圓柱形木材,埋在墻壁中,不知道大小,用鋸取鋸它,鋸口深一寸,鋸道長一尺,問這塊圓柱形木材的直徑是多少?現(xiàn)有圓柱形木材一部分埋在墻壁中,截面如圖所示,已知弦
尺,弓形高
寸,則陰影部分面積約為(注:
,
,1尺=10寸)( )
![]()
A. 6.33平方寸B. 6.35平方寸
C. 6.37平方寸D. 6.39平方寸
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,在
中,
,
,
與
相交于點M.設
,
.
![]()
(1)試用向量
表示
.
(2)在線段
上取點E,在線段
取點F,使
過點M.設
,
,其中
當
與
重合時,
,
,此時
;當
與
重合時,
,
,此時
.能否由此得出般結(jié)論:不論
在線段
上如何變動,等式
恒成立,請說明理由.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com