科目: 來源: 題型:
【題目】某企業(yè)有
,
兩個分廠生產(chǎn)某種產(chǎn)品,規(guī)定該產(chǎn)品的某項質(zhì)量指標值不低于130的為優(yōu)質(zhì)品.分別從
,
兩廠中各隨機抽取100件產(chǎn)品統(tǒng)計其質(zhì)量指標值,得到如圖頻率分布直方圖:
![]()
(1)根據(jù)頻率分布直方圖,分別求出
分廠的質(zhì)量指標值的眾數(shù)和中位數(shù)的估計值;
(2)填寫
列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有
的把握認為這兩個分廠的產(chǎn)品質(zhì)量有差異?
優(yōu)質(zhì)品 | 非優(yōu)質(zhì)品 | 合計 | |
| |||
| |||
合計 |
(3)(i)從
分廠所抽取的100件產(chǎn)品中,利用分層抽樣的方法抽取10件產(chǎn)品,再從這10件產(chǎn)品中隨機抽取2件,已知抽到一件產(chǎn)品是優(yōu)質(zhì)品的條件下,求抽取的兩件產(chǎn)品都是優(yōu)質(zhì)品的概率;
(ii)將頻率視為概率,從
分廠中隨機抽取10件該產(chǎn)品,記抽到優(yōu)質(zhì)品的件數(shù)為
,求
的數(shù)學(xué)期望.
附:![]()
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】某科研小組有20個不同的科研項目,每年至少完成一項。有下列兩種完成所有科研項目的計劃:
A計劃:第一年完成5項,從第一年開始,每年完成的項目不得少于次年,直到全部完成為止;
B計劃:第一年完成項數(shù)不限,從第一年開始,每年完成的項目不得少于次年,恰好5年完成所有項目。
那么,按照A計劃和B計劃所安排的科研項目不同完成順序的方案數(shù)量
A. 按照A計劃完成的方案數(shù)量多
B. 按照B計劃完成的方案數(shù)量多
C. 按照兩個計劃完成的方案數(shù)量一樣多
D. 無法判斷哪一種計劃的方案數(shù)量多
查看答案和解析>>
科目: 來源: 題型:
【題目】有甲、乙兩個班級進行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績,得到如下所示的列聯(lián)表:
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
甲班 | 10 | b | |
乙班 | c | 30 | |
總計105 |
已知在全部105人中隨機抽取1人,成績優(yōu)秀的概率為
,則下列說法正確的是( )
參考公式:![]()
附表:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
A.列聯(lián)表中c的值為30,b的值為35
B.列聯(lián)表中c的值為15,b的值為50
C.根據(jù)列聯(lián)表中的數(shù)據(jù),若按95%的可靠性要求,能認為“成績與班級有關(guān)系”
D.根據(jù)列聯(lián)表中的數(shù)據(jù),若按95%的可靠性要求,不能認為“成績與班級有關(guān)系”
查看答案和解析>>
科目: 來源: 題型:
【題目】以直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρsin2α﹣4cosα=0.已知直線l的參數(shù)方程為
(
為參數(shù)),點M的直角坐標為
.
(1)求直線l和曲線C的普通方程;
(2)設(shè)直線l與曲線C交于A,B兩點,求
.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點P(-1,0),設(shè)不垂直于x軸的直線l與拋物線y2=2x交于不同的兩點A、B,若x軸是∠APB的角平分線,則直線l一定過點
A. (
,0) B. (1,0) C. (2,0) D. (-2,0)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖 1,在直角梯形
中,
,且
.現(xiàn)以
為一邊向外作正方形
,然后沿邊
將正方形
翻折,使
平面與平面
垂直,
為
的中點,如圖 2.
(1)求證:
平面
;
(2)求證:
平面
;
(3)求
與平面
所成角的正弦值.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”.利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值3.14,這就是著名的“徽率”.小華同學(xué)利用劉徽的“割圓術(shù)”思想在半徑為1的圓內(nèi)作正
邊形求其面積,如圖是其設(shè)計的一個程序框圖,則框圖中應(yīng)填入、輸出
的值分別為( )
(參考數(shù)據(jù):
)
![]()
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com