科目: 來源: 題型:
【題目】求最小的正整數(shù)
,使得當正整數(shù)點
時,在前
個正整數(shù)構(gòu)成的集合
中,對任意
總存在另一個數(shù)
且
,滿足
為平方數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知梯形
中,
,
,
,
,
是
上的點,![]()
是
的中點,沿
將梯形
折起,使平面
平面
.
![]()
(1)當
時,求證:
;
(2)記以
為頂點的三棱錐的體積為
,求
的最大值;
(3)當
取得最大值時,求二面角
的大小.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(1) 證明:PB∥平面AEC
(2) 設(shè)二面角D-AE-C為60°,AP=1,AD=
,求三棱錐E-ACD的體積
查看答案和解析>>
科目: 來源: 題型:
【題目】如果從北大打車到北京車站去接人,聰明的專家一定會選擇走四環(huán)。雖然從城中間直穿過去看上去很誘人,但考慮到北京的道路幾乎總是正南正北的方向,事實上不會真有人認為這樣走能抄近路。在城市中,專家估算兩點之間的距離時,不會直接去測量兩點之間的直線距離,而會去考慮它們相距多少個街區(qū)。在理想模型中,假設(shè)每條道路都是水平或者豎直的,那么只要你朝著目標走(不故意繞遠路),不管你這樣走,花費的路程都是一樣的。出租車幾何學(xué)(taxicab geometry),所謂的“出租車幾何學(xué)”是由十九世紀的另一位真專家赫爾曼-閔可夫斯基所創(chuàng)立的。在出租車幾何學(xué)中,點還是形如
的有序?qū)崝?shù)對,直線還是滿足
的所有
組成的圖形,角度大小的定義也和原來一樣。只是直角坐標系內(nèi)任意兩點
,
定義它們之間的一種“距離”:
,請解決以下問題:
(1)定義:“圓”是所有到定點“距離”為定值的點組成的圖形,求“圓周”上的所有點到點
的“距離”均為
的“圓”方程,并作出大致圖像;
(2)在出租車幾何學(xué)中,到兩點
、
“距離”相等的點的軌跡稱為線段
的“垂直平分線”,已知點
,
,
;
①寫出在線段
的“垂直平分線”的軌跡方程,并寫出大致圖像;
②求證:
三邊的“垂直平分線”交于一點(該點稱為
的“外心”),并求出
的“外心”.
查看答案和解析>>
科目: 來源: 題型:
【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)
千件,需另投入成本
,當年產(chǎn)量不足80千件時,
(萬元);當年產(chǎn)量不小于80千件時,
(萬元),每件售價為0.05萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤
(萬元)關(guān)于年產(chǎn)量
(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com