科目: 來源: 題型:
【題目】如圖,已知梯形
中,
,
,
,四邊形
為矩形,
,平面
平面
.
![]()
(Ⅰ)求證:
平面
;
(Ⅱ)求平面
與平面
所成銳二面角的余弦值;
(Ⅲ)在線段
上是否存在點
,使得直線
與平面
所成角的正弦值為
,若存在,求出線段
的長;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓
:
的左,右焦點分別為
,且
與短軸的一個端點Q構成一個等腰直角三角形,點P(
)在橢圓
上,過點
作互相垂直且與x軸不重合的兩直線AB,CD分別交橢圓
于A,B,C,D且M,N分別是弦AB,CD的中點
(1)求橢圓的方程
(2)求證:直線MN過定點R(
)
(3)求
面積的最大值
查看答案和解析>>
科目: 來源: 題型:
【題目】在正方體ABCD-A1B1C1D1中,點M、N分別在AB1、BC1上,且AM=
AB1,BN=
BC1,則下列結論:①AA1⊥MN;②A1C1// MN;③MN//平面A1B1C1D1;④B1D1⊥MN,其中,
正確命題的個數是( )
![]()
A.1B.2C.3D.4
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系
中,曲線
的參數方程為
(
為參數),
為
上的動點,
點滿足
,點
的軌跡為曲線
.
(1)求曲線
的直角坐標方程;
(2)在以為
極點,
軸的正半軸為極軸的極坐標系中,射線
與
的異于極點的交點為
,與
的異于極點的交點為
,求
.
查看答案和解析>>
科目: 來源: 題型:
【題目】狄利克雷是19世紀德國著名的數學家,他定義了一個“奇怪的函數”
,下列關于狄利克雷函數的敘述正確的有:______.
①
的定義域為
,值域是
②
具有奇偶性,且是偶函數
③
是周期函數,但它沒有最小正周期 ④對任意的
,![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】(本小題滿分12分)
設函數f(x)=x+ax2+blnx,曲線y=f(x)過P(1,0),且在P點處的切斜線率為2.
(I)求a,b的值;
(II)證明:f(x)≤2x-2。
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com