科目: 來源: 題型:
【題目】某職業(yè)學(xué)校有2000名學(xué)生,校服務(wù)部為了解學(xué)生在校的月消費(fèi)情況,隨機(jī)調(diào)查了100名學(xué)生,并將統(tǒng)計(jì)結(jié)果繪成直方圖如圖所示.
![]()
(1)試估計(jì)該校學(xué)生在校月消費(fèi)的平均數(shù);
(2)根據(jù)校服務(wù)部以往的經(jīng)驗(yàn),每個(gè)學(xué)生在校的月消費(fèi)金額
(元)和服務(wù)部可獲得利潤(rùn)
(元),滿足關(guān)系式:
根據(jù)以上抽樣調(diào)查數(shù)據(jù),將頻率視為概率,回答下列問題:
(i)將校服務(wù)部從一個(gè)學(xué)生的月消費(fèi)中,可獲得的利潤(rùn)記為
,求
的分布列及數(shù)學(xué)期望.
(ii)若校服務(wù)部計(jì)劃每月預(yù)留月利潤(rùn)的
,用于資助在校月消費(fèi)低于400元的學(xué)生,估計(jì)受資助的學(xué)生每人每月可獲得多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)直線
與拋物線
交于
,
兩點(diǎn),與橢圓
交于
,
兩點(diǎn),直線
,
,
,
(
為坐標(biāo)原點(diǎn))的斜率分別為
,
,
,
,若
.
(1)是否存在實(shí)數(shù)
,滿足
,并說明理由;
(2)求
面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在極坐標(biāo)系中,已知曲線
:
和曲線
:
,以極點(diǎn)
為坐標(biāo)原點(diǎn),極軸為
軸非負(fù)半軸建立平面直角坐標(biāo)系.
(1)求曲線
和曲線
的直角坐標(biāo)方程;
(2)若點(diǎn)
是曲線
上一動(dòng)點(diǎn),過點(diǎn)
作線段
的垂線交曲線
于點(diǎn)
,求線段
長(zhǎng)度的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校組織由5名學(xué)生參加的演講比賽,采用抽簽法決定演講順序,在“學(xué)生
和
都不是第一個(gè)出場(chǎng),
不是最后一個(gè)出場(chǎng)”的前提下,學(xué)生
第一個(gè)出場(chǎng)的概率為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),討論函數(shù)
的單調(diào)性;
(2)若函數(shù)
有兩個(gè)極值點(diǎn)
,
,證明:
.
查看答案和解析>>
科目: 來源: 題型:
【題目】某人經(jīng)營(yíng)一個(gè)抽獎(jiǎng)游戲,顧客花費(fèi)3元錢可購(gòu)買一次游戲機(jī)會(huì),每次游戲中,顧客從標(biāo)有黑1、黑2、黑3、黑4、紅1、紅3的6張卡片中隨機(jī)抽取2張,并根據(jù)摸出的卡片的情況進(jìn)行兌獎(jiǎng),經(jīng)營(yíng)者將顧客抽到的卡片情況分成以下類別:
:同花順,即卡片顏色相同且號(hào)碼相鄰;
:同花,即卡片顏色相同,但號(hào)碼不相鄰;
:順子,即卡片號(hào)碼相鄰,但顏色不同;
:對(duì)子,即兩張卡片號(hào)碼相同;
:其它,即
,
,
,
以外的所有可能情況,若經(jīng)營(yíng)者打算將以上五種類別中最不容易發(fā)生的一種類別對(duì)應(yīng)顧客中一等獎(jiǎng),最容易發(fā)生的一種類別對(duì)應(yīng)顧客中二等獎(jiǎng),其他類別對(duì)應(yīng)顧客中三等獎(jiǎng).
(1)一、二等獎(jiǎng)分別對(duì)應(yīng)哪一種類別?(寫出字母即可)
(2)若經(jīng)營(yíng)者規(guī)定:中一、二、三等獎(jiǎng),分別可獲得價(jià)值9元、3元、1元的獎(jiǎng)品,假設(shè)某天參與游戲的顧客為300人次,試估計(jì)經(jīng)營(yíng)者這一天的盈利.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線
:
(
)的焦點(diǎn)是橢圓
:
(
)的右焦點(diǎn),且兩曲線有公共點(diǎn)![]()
(1)求橢圓
的方程;
(2)橢圓
的左、右頂點(diǎn)分別為
,
,若過點(diǎn)
且斜率不為零的直線
與橢圓
交于
,
兩點(diǎn),已知直線
與
相較于點(diǎn)
,試判斷點(diǎn)
是否在一定直線上?若在,請(qǐng)求出定直線的方程;若不在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】趙爽是我國(guó)古代數(shù)學(xué)家、天文學(xué)家大約在公元222年趙爽為《周碑算經(jīng)》一書作序時(shí),介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長(zhǎng)得到的正方形是由4個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的)類比“趙爽弦圖”,趙爽弦圖可類似地構(gòu)造如圖所示的圖形,它是由個(gè)3全等的等邊三角形與中間的一個(gè)小等邊三角形組成的一個(gè)大等邊三角形,設(shè)DF2AF,若在大等邊三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小等邊三角形的概率是( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4—5:不等式選講
設(shè)
.
(1)當(dāng)
時(shí),解不等式
;
(2)若
對(duì)任意
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】近來天氣變化無常,陡然升溫、降溫幅度大于
的天氣現(xiàn)象出現(xiàn)增多.陡然降溫幅度大于
容易引起幼兒傷風(fēng)感冒疾病.為了解傷風(fēng)感冒疾病是否與性別有關(guān),在某婦幼保健院隨機(jī)對(duì)人院的
名幼兒進(jìn)行調(diào)查,得到了如下的列聯(lián)表,若在全部
名幼兒中隨機(jī)抽取
人,抽到患傷風(fēng)感冒疾病的幼兒的概率為
,
(1)請(qǐng)將下面的列聯(lián)表補(bǔ)充完整;
患傷風(fēng)感冒疾病 | 不患傷風(fēng)感冒疾病 | 合計(jì) | |
男 | 25 | ||
女 | 20 | ||
合計(jì) | 100 |
(2)能否在犯錯(cuò)誤的概率不超過
的情況下認(rèn)為患傷風(fēng)感冒疾病與性別有關(guān)?說明你的理由;
(3)已知在患傷風(fēng)感冒疾病的
名女性幼兒中,有
名又患黃痘病.現(xiàn)在從患傷風(fēng)感冒疾病的
名女性中,選出
名進(jìn)行其他方面的排查,記選出患黃痘病的女性人數(shù)為
,求
的分布列以及數(shù)學(xué)期望.下面的臨界值表供參考:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
參考公式:
,其中![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com