如圖.在平面直角坐標(biāo)系中.二次函數(shù)y=x2+bx+c的圖象與x軸交于A.B兩點(diǎn)答案解析
科目:czsx
來(lái)源:2003年上海市中考數(shù)學(xué)試題
題型:059
|
|
已知在平面直角坐標(biāo)系內(nèi),O為坐標(biāo)原點(diǎn),A、B是x軸正半軸上的兩點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè),如圖,二次函數(shù)y=a x2+bx+c(a≠0)的圖象經(jīng)過(guò)點(diǎn)A、B,與y軸相交于點(diǎn)C.

| (1) |
|
(2) |
|
如果線段OC的長(zhǎng)度是線段OA、OB長(zhǎng)度的比例中項(xiàng),試證a、c互為倒數(shù);
|
|
(3) |
|
在(2)的條件下,如果b=-4,AB= ,求a、c的值.
|
|
|
查看答案和解析>>
科目:czsx
來(lái)源:
題型:解答題
13.

如圖,平面直角坐標(biāo)系xOy中,已知B(-1,0),一次函數(shù)y=-x+5的圖象與x軸、y軸分別交于點(diǎn)A、C兩點(diǎn),二次函數(shù)y=-x
2+bx+c的圖象經(jīng)過(guò)點(diǎn)A、點(diǎn)B.
(1)求這個(gè)二次函數(shù)的解析式;
(2)點(diǎn)P是該二次函數(shù)圖象的頂點(diǎn),求△APC的面積;
(3)如果點(diǎn)Q在線段AC上,且△ABC與△AOQ相似,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:czsx
來(lái)源:
題型:

如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x
2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,-3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn).
(1)求這個(gè)二次函數(shù)的表達(dá)式.
(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點(diǎn)P,使四邊形POP′C為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.
查看答案和解析>>
科目:czsx
來(lái)源:
題型:
如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)
y=x2+bx+c的圖象與x軸交于A(-1,0)、B(3,0)兩點(diǎn),頂點(diǎn)為C.

(1)求此二次函數(shù)解析式;
(2)點(diǎn)D為點(diǎn)C關(guān)于x軸的對(duì)稱(chēng)點(diǎn),過(guò)點(diǎn)A作直線l:
y=x+交BD于點(diǎn)E,過(guò)點(diǎn)B作直線BK∥AD交直線l于K點(diǎn).問(wèn):在四邊形ABKD的內(nèi)部是否存在點(diǎn)P,使得它到四邊形ABKD四邊的距離都相等?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,若M、N分別為直線AD和直線l上的兩個(gè)動(dòng)點(diǎn),連結(jié)DN、NM、MK,求DN+NM+MK和的最小值.
查看答案和解析>>
科目:czsx
來(lái)源:
題型:

如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x
2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,-3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn).
(1)分別求出圖中直線和拋物線的函數(shù)表達(dá)式;
(2)連接PO、PC,并把△POC沿C O翻折,得到四邊形POP′C,那么是否存在點(diǎn)P,使四邊形POP′C為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:czsx
來(lái)源:
題型:
如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x
2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的

坐標(biāo)為(3,0),與y軸交于C(0,-3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn).
(1)求這個(gè)二次函數(shù)的表達(dá)式.
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC為等腰梯形,直接寫(xiě)出此時(shí)P點(diǎn)的坐標(biāo):P(
2
2
,
-3
-3
).
(3)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點(diǎn)P,使四邊形POP′C為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:czsx
來(lái)源:
題型:

如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)
y=-x2+bx-2的圖象與y軸交于C點(diǎn),與x軸交于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)右側(cè)),一次函數(shù)y=mx+n(m≠0)的圖象經(jīng)過(guò)A、C兩點(diǎn),已知
tan∠BAC=.
(1)求該二次函數(shù)和一次函數(shù)的解析式;
(2)連接BC,求△ABC的面積.
查看答案和解析>>
科目:czsx
來(lái)源:
題型:

如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x
2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,-3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大,并求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.
查看答案和解析>>
科目:czsx
來(lái)源:福建省廈門(mén)外國(guó)語(yǔ)學(xué)校2011屆九年級(jí)上學(xué)期期中考試數(shù)學(xué)試題
題型:044
如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,-3)點(diǎn),點(diǎn)P是直線BC下方
的拋物線上一動(dòng)點(diǎn).
(1)求b,c的值
.
(2)連結(jié)PO、PC,并把△POC沿CO翻折,得到四邊形PO
C,那么是否存在點(diǎn)P,使四邊形PO
C為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大,并求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.
查看答案和解析>>
科目:czsx
來(lái)源:2013年山東省棗莊市高級(jí)中等學(xué)校招生考試數(shù)學(xué)
題型:044
如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,-3),點(diǎn)P是直線BC下方拋物線上的一個(gè)動(dòng)點(diǎn).

(1)求二次函數(shù)解析式;
(2)連接PO,PC,并將△POC沿y軸對(duì)折,得到四邊形PO
C.是否存在點(diǎn)P,使四邊形PO
C為菱形?若存在,求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.
查看答案和解析>>
科目:czsx
來(lái)源:2010年湖北省恩施自治州初中畢業(yè)及高中招生考試數(shù)學(xué)試題
題型:044
如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,-3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn).

(1)求這個(gè)二次函數(shù)的表達(dá)式
.
(2)連結(jié)PO、PC,并把△POC沿CO翻折,得到四邊形PO
C,那么是否存在點(diǎn)P,使四邊形PO
C為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大并求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.
查看答案和解析>>
科目:czsx
來(lái)源:
題型:解答題
如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的
坐標(biāo)為(3,0),與y軸交于C(0,-3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn).
(1)求這個(gè)二次函數(shù)的表達(dá)式.
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC為等腰梯形,直接寫(xiě)出此時(shí)P點(diǎn)的坐標(biāo):P(______,______).
(3)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點(diǎn)P,使四邊形POP′C為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:czsx
來(lái)源:
題型:解答題
如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,-3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn).
(1)分別求出圖中直線和拋物線的函數(shù)表達(dá)式;
(2)連接PO、PC,并把△POC沿C O翻折,得到四邊形POP′C,那么是否存在點(diǎn)P,使四邊形POP′C為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:czsx
來(lái)源:
題型:解答題
如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,-3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大,并求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.
查看答案和解析>>
科目:czsx
來(lái)源:湖北省中考真題
題型:解答題
如圖所示,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,-3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn)。
(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)連結(jié)PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點(diǎn)P,使四邊形POP′C為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大并求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積。
查看答案和解析>>
科目:czsx
來(lái)源:第2章《二次函數(shù)》中考題集(31):2.3 二次函數(shù)的應(yīng)用(解析版)
題型:解答題

如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x
2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,-3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn).
(1)求這個(gè)二次函數(shù)的表達(dá)式.
(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點(diǎn)P,使四邊形POP′C為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.
查看答案和解析>>
科目:czsx
來(lái)源:第6章《二次函數(shù)》中考題集(31):6.4 二次函數(shù)的應(yīng)用(解析版)
題型:解答題

如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x
2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,-3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn).
(1)求這個(gè)二次函數(shù)的表達(dá)式.
(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點(diǎn)P,使四邊形POP′C為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.
查看答案和解析>>
科目:czsx
來(lái)源:2010-2011學(xué)年浙江省湖州市吳興區(qū)九年級(jí)(上)期末數(shù)學(xué)試卷(解析版)
題型:解答題
如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x
2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,-3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大,并求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.
查看答案和解析>>
科目:czsx
來(lái)源:2011-2012學(xué)年四川省成都市高新區(qū)九年級(jí)(上)期末數(shù)學(xué)試卷(解析版)
題型:解答題

如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x
2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,-3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn).
(1)求這個(gè)二次函數(shù)的表達(dá)式.
(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點(diǎn)P,使四邊形POP′C為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.
查看答案和解析>>
科目:czsx
來(lái)源:2011-2012學(xué)年河南省鄭州市新密市九年級(jí)(上)期末數(shù)學(xué)試卷(解析版)
題型:解答題

如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x
2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,-3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn).
(1)求這個(gè)二次函數(shù)的表達(dá)式.
(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點(diǎn)P,使四邊形POP′C為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.
查看答案和解析>>