科目:czsx 來源: 題型:解答題
科目:czsx 來源:期末題 題型:解答題
科目:czsx 來源: 題型:閱讀理解
閱讀下面材料,按要求完成后面作業(yè).
三角形內(nèi)角平分線性質(zhì)定理:三角形內(nèi)角平分線分對邊所得的兩條線段和這個(gè)角的兩邊對應(yīng)成比例.
已知:△ABC中,AD是角平分線(如圖).
求證:
=
.
分析:要證
=
,一般只要證BD、DC與AB、AC或BD、AB與DC、AC所在的三角形相似,現(xiàn)在B、D、C在一條直線,△ABD與△ADC不相似,需要考慮用別的方法換比.
在比例式
=
中,AC恰好是BD、DC、AB的第四比例項(xiàng),所以考慮過C作CE∥AD交BA的延長線于E,從而得到BD、DC、AB的第四比例項(xiàng)AE,這樣,證明
=
,就可轉(zhuǎn)化證
=
.
1.完成證明過程:
證明:
2.上述證明過程中,用到了哪些定理(寫對兩個(gè)即可)
答:用了:①
②
3.在上述分析和你的證明過程中,主要用到了下列三種數(shù)學(xué)思想的哪一種,①數(shù)形結(jié)合思想 ②轉(zhuǎn)化思想 ③分類討論思想
答:
4.用三角形內(nèi)角平分線定理解答問題:
如圖,△ABC中,AD是角平分線,AB=5cm,AC=4cm,B
D=7cm,求BD之長.
![]()
科目:czsx 來源: 題型:
科目:czsx 來源: 題型:
科目:czsx 來源: 題型:
科目:czsx 來源: 題型:解答題
科目:czsx 來源: 題型:解答題
科目:czsx 來源:浙江省期末題 題型:操作題
科目:czsx 來源:不詳 題型:解答題
科目:czsx 來源: 題型:
科目:czsx 來源:2014-2015學(xué)年河北省保定市蠡縣八年級下學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知,在Rt△ABC中,∠BAC=90°.
![]()
實(shí)踐與操作:
(1)①利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母(保留作圖痕跡,不寫作法):作線段AC的垂直平分線MN,垂足為O;
②連接BO,并延長BO到點(diǎn)D,使得OD=BO,連接AD、CD;
③分別在OA、OC的延長線上取點(diǎn)E、F,使AE=CF,連接BF、FD、DE、EB.
推理與運(yùn)用:
(2)①求證:四邊形BFDE是平行四邊形;
②若AB=4,AC=6,求當(dāng)AE的長為多少時(shí),四邊形BFDE是矩形.
科目:czsx 來源: 題型:解答題
科目:czsx 來源: 題型:解答題
科目:czsx 來源: 題型:解答題
科目:czsx 來源: 題型:解答題
科目:czsx 來源: 題型:
科目:czsx 來源: 題型:解答題
科目:czsx 來源:2012年山東省青島市李滄區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題
科目:czsx 來源:2014-2015學(xué)年四川省階段S校九年級聯(lián)考二數(shù)學(xué)試卷(解析版) 題型:解答題
(9分)【問題引入】
幾個(gè)人拎著水桶在一個(gè)水龍頭前面排隊(duì)打水,水桶有大有?。麄冊撛鯓优抨?duì)才能使得總的排隊(duì)時(shí)間最短?
假設(shè)只有兩個(gè)人時(shí),設(shè)大桶接滿水需要T分鐘,小桶接滿水需要t分鐘(顯然T>t),若拎著大桶者在拎小桶者之前,則拎大桶者可直接接水,只需等候T分鐘,拎小桶者一共等候了(T+t)分鐘,兩人一共等候了(2T+t)分鐘;反之,若拎小桶者在拎大桶者之前,容易求出兩人接滿水等候(T+2t)分鐘??梢?,要使總的排隊(duì)時(shí)間最短。拎小桶者應(yīng)排在拎大桶者前面。這樣,我們可以猜測,幾個(gè)人拎著水桶在一個(gè)水龍頭前面排隊(duì)打水,要使總的排隊(duì)時(shí)間最短,需將他們按水桶從小到大排隊(duì).
規(guī)律總結(jié):
事實(shí)上,只要不按照從小到大的順序排隊(duì),就至少有緊挨著的兩個(gè)人拎大桶者排在拎小桶者之前,仍設(shè)大桶接滿水需要T分鐘,小桶接滿水需t分鐘,并設(shè)拎大桶者開始接水時(shí)已經(jīng)等候了m分鐘,這樣拎大桶者接滿水一共等候了(m+T)分鐘,拎小桶者接滿水一共等候了(m+T+t)分鐘,兩人共等候了(2m+2T+t)分鐘,在其他人位置不變的前提下,讓這兩個(gè)人交換位置,即局部調(diào)整這兩個(gè)人的位置,同樣可以計(jì)算兩個(gè)人接滿水共等候了 __ ___分鐘,共節(jié)省了 _________分鐘,而其他人的等候時(shí)間未變。這說明只要存在有緊挨著的兩個(gè)人是拎大桶者在拎小桶者前,都可以這樣局部調(diào)整,從而使得總等候時(shí)間減少。這樣經(jīng)過一系列調(diào)整之后,整個(gè)隊(duì)伍都是從小到大排列,就達(dá)到最優(yōu)狀態(tài),總的排隊(duì)時(shí)間就最短.
【方法探究】
一般地,對某些涉及多個(gè)可變對象的數(shù)學(xué)問題,先對其少數(shù)對象進(jìn)行調(diào)整,其他對象暫時(shí)保持不變,從而化難為易,取得問題的局部解決.經(jīng)過若干次這種局部的調(diào)整,不斷縮小范圍,逐步逼近目標(biāo),最終使問題得到解決,這種數(shù)學(xué)思想方法就叫做局部調(diào)整法.
【實(shí)踐應(yīng)用1】
如圖1,在銳角△ABC中,AB=4
,∠BAC=45°,∠BAC的平分線交BC于點(diǎn)D,M、N分別是AD和AB上的動點(diǎn),則BM+MN的最小值是多少?
解析:(1)先假定N為定點(diǎn),調(diào)整M到合適位置,使BM+MN有最小值(相對的).
容易想到,在AC上作AN′=AN(即作點(diǎn)N關(guān)于AD的對稱點(diǎn)N′),連接BN′交AD于M,則M點(diǎn)是使BM+MN有相對最小值的點(diǎn).(如圖2,M點(diǎn)確定方法找到)
(2)再考慮點(diǎn)N的位置,使BM+MN最終達(dá)到最小值.
可以理解,BM+MN = BM+MN′,所以要使BM+MN′有最小值,只需使 ,此時(shí)BM+MN的最小值為 .
![]()
【實(shí)踐應(yīng)用2】
如圖,把邊長是3的正方形等分成9個(gè)小正方形,在有陰影的兩個(gè)小正方形內(nèi)(包括邊界)分別任取點(diǎn)P、R,與已知格點(diǎn)Q(每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn))構(gòu)成三角形,求△PQR的最大面積,并在圖2中畫出面積最大時(shí)的△PQR的圖形.
![]()
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com