欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網(wǎng) > 試題搜索列表 >如圖.已知ad是△abc的中線.按要求作圖

如圖.已知ad是△abc的中線.按要求作圖答案解析

科目:czsx 來源: 題型:解答題

19.如圖,已知Rt△ABC中,∠B=90°,且AB=2BC,請?jiān)趫D中按如下要求進(jìn)行操作和證明:
(1)用圓規(guī)在CA上截取CD=CB,保留痕跡,標(biāo)注點(diǎn)D;再以點(diǎn)A為圓心,AD為半徑畫弧交AB于點(diǎn)P,保留痕跡,標(biāo)注點(diǎn)P;
(2)證明點(diǎn)P是線段AB的黃金分割點(diǎn).

查看答案和解析>>

科目:czsx 來源:期末題 題型:解答題

閱讀下面材料,按要求完成后面作業(yè)。
三角形內(nèi)角平分線性質(zhì)定理:三角形內(nèi)角平分線分對邊所得的兩條線段和這個(gè)角的兩邊對應(yīng)成比例。
 已知:△ABC中,AD是角平分線(如圖1), 求證:=
               
分析:要證=,一般只要證BD、DC與AB、AC或BD、AB與DC、AC所在的三角形相似,現(xiàn)在B、D、C在一條直線,△ABD與△ADC不相似,需要考慮用別的方法換比。
 在比例式=中,AC恰好是BD、DC、AB的第四比例項(xiàng),所以考慮過C作CE∥AD交BA的延長線于E,從而得到BD、DC、AB的第四比例項(xiàng)AE,這樣,證明=,就可轉(zhuǎn)化證=
(1)完成證明過程: 
證明:
(2)上述證明過程中,用到了哪些定理(寫對兩個(gè)即可)
答:用了:①____________;
②_____________。
 (3)在上述分析和你的證明過程中,主要用到了下列三種數(shù)學(xué)思想的哪一種:①數(shù)形結(jié)合思想 ②轉(zhuǎn)化思想 ③分類討論思想 
答:____________。
(4) 用三角形內(nèi)角平分線定理解答問題: 
如圖2,△ABC中,AD是角平分線,AB=5cm,AC=4cm,BD=7cm,求BC之長。

查看答案和解析>>

科目:czsx 來源: 題型:閱讀理解

閱讀下面材料,按要求完成后面作業(yè).

  三角形內(nèi)角平分線性質(zhì)定理:三角形內(nèi)角平分線分對邊所得的兩條線段和這個(gè)角的兩邊對應(yīng)成比例.

已知:△ABC中,AD是角平分線(如圖).

求證:.

  分析:要證,一般只要證BD、DC與AB、AC或BD、AB與DC、AC所在的三角形相似,現(xiàn)在B、D、C在一條直線,△ABD與△ADC不相似,需要考慮用別的方法換比.

在比例式中,AC恰好是BD、DC、AB的第四比例項(xiàng),所以考慮過C作CE∥AD交BA的延長線于E,從而得到BD、DC、AB的第四比例項(xiàng)AE,這樣,證明,就可轉(zhuǎn)化證.

  1.完成證明過程:

證明:

  2.上述證明過程中,用到了哪些定理(寫對兩個(gè)即可)

  答:用了:①

          ②

  3.在上述分析和你的證明過程中,主要用到了下列三種數(shù)學(xué)思想的哪一種,①數(shù)形結(jié)合思想  ②轉(zhuǎn)化思想  ③分類討論思想

  答:

  4.用三角形內(nèi)角平分線定理解答問題:

  如圖,△ABC中,AD是角平分線,AB=5cm,AC=4cm,BD=7cm,求BD之長.

查看答案和解析>>

科目:czsx 來源: 題型:

如圖,過△ABC的頂點(diǎn)A作AE⊥BC,垂足為E.點(diǎn)D是射線AE上一動點(diǎn)(點(diǎn)D不與頂點(diǎn)A重合),連結(jié)DB、DC.已知BC=m,AD=n.

(1)若動點(diǎn)D在BC的下方時(shí)(如圖①),AE=3,DE=2,BC=6,求S四邊形ABDC;
(2)若動點(diǎn)D在BC的下方時(shí)(如圖①),求S四邊形ABDC的值(結(jié)果用含m、n的代數(shù)式表示);
(3)若動點(diǎn)D在BC的上方時(shí)(如圖②),(1)中結(jié)論是否仍成立?說明理由;
(4)請你按以下要求在8×6的方格中(如圖③,每一個(gè)小正方形的邊長為1),設(shè)計(jì)一個(gè)軸對稱圖形.設(shè)計(jì)要求如下:對角線互相垂直且面積為6的格點(diǎn)四邊形(4個(gè)頂點(diǎn)都在格點(diǎn)上).

查看答案和解析>>

科目:czsx 來源: 題型:

如圖,過△ABC的頂點(diǎn)A作AE⊥BC,垂足為E.點(diǎn)D是射線AE上一動點(diǎn)(點(diǎn)D不與頂點(diǎn)A重合),連接DB、DC.已知BC=m,AD=n
(1)若動點(diǎn)D在BC的下方時(shí)(如圖①),求S四邊形ABDC的值(結(jié)果用含m、n的代數(shù)式表示);
(2)若動點(diǎn)D在BC的上方時(shí)(如圖②),(1)中結(jié)論是否仍成立?說明理由;
(3)請你按以下要求在8×6的方格中(如圖③,每一個(gè)小正方形的邊長為1),設(shè)計(jì)一個(gè)軸對稱圖形.設(shè)計(jì)要求如下:對角線互相垂直且面積為6的格點(diǎn)四邊形(4個(gè)頂點(diǎn)都在格點(diǎn)上).

查看答案和解析>>

科目:czsx 來源: 題型:

如圖,已知△ABC,按下列要求作圖:
(1)在網(wǎng)格中作出△ABC經(jīng)平移后的像,使點(diǎn)B的像是點(diǎn)B′;
(2)用直尺和圓規(guī)在△ABC中作出∠A的平分線AD(保留作圖痕跡,不要求寫作法).

查看答案和解析>>

科目:czsx 來源: 題型:解答題

如圖,過△ABC的頂點(diǎn)A作AE⊥BC,垂足為E.點(diǎn)D是射線AE上一動點(diǎn)(點(diǎn)D不與頂點(diǎn)A重合),連接DB、DC.已知BC=m,AD=n
(1)若動點(diǎn)D在BC的下方時(shí)(如圖①),求S四邊形ABDC的值(結(jié)果用含m、n的代數(shù)式表示);
(2)若動點(diǎn)D在BC的上方時(shí)(如圖②),(1)中結(jié)論是否仍成立?說明理由;
(3)請你按以下要求在8×6的方格中(如圖③,每一個(gè)小正方形的邊長為1),設(shè)計(jì)一個(gè)軸對稱圖形.設(shè)計(jì)要求如下:對角線互相垂直且面積為6的格點(diǎn)四邊形(4個(gè)頂點(diǎn)都在格點(diǎn)上).

查看答案和解析>>

科目:czsx 來源: 題型:解答題

如圖,已知△ABC,按下列要求作圖:
(1)在網(wǎng)格中作出△ABC經(jīng)平移后的像,使點(diǎn)B的像是點(diǎn)B′;
(2)用直尺和圓規(guī)在△ABC中作出∠A的平分線AD(保留作圖痕跡,不要求寫作法).

查看答案和解析>>

科目:czsx 來源:浙江省期末題 題型:操作題

如圖,已知△ABC,按下列要求作圖:
(1)在網(wǎng)格中作出△ABC經(jīng)平移后的像,使點(diǎn)B的像是點(diǎn)B′;
(2)用直尺和圓規(guī)在△ABC中作出∠A的平分線AD(保留作圖痕跡,不要求寫作法).

查看答案和解析>>

科目:czsx 來源:不詳 題型:解答題

如圖,已知△ABC,按下列要求作圖:
(1)在網(wǎng)格中作出△ABC經(jīng)平移后的像,使點(diǎn)B的像是點(diǎn)B′;
(2)用直尺和圓規(guī)在△ABC中作出∠A的平分線AD(保留作圖痕跡,不要求寫作法).
精英家教網(wǎng)

查看答案和解析>>

科目:czsx 來源: 題型:

如圖,已知,在Rt△ABC中,∠BAC=90°.
實(shí)踐與操作:
(1)①利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母(保留作圖痕跡,不寫作法):作線段AC的垂直平分線MN,垂足為O;
     ②連接BO,并延長BO到點(diǎn)D,使得OD=BO,連接AD、CD;
     ③分別在OA、OC的延長線上取點(diǎn)E、F,使AE=CF,連接BF、FD、DE、EB.
推理與運(yùn)用:
(2)①求證:四邊形BFDE是平行四邊形;
     ②若AB=4,AC=6,求當(dāng)AE的長為多少時(shí),四邊形BFDE是矩形.

查看答案和解析>>

科目:czsx 來源:2014-2015學(xué)年河北省保定市蠡縣八年級下學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知,在Rt△ABC中,∠BAC=90°.

實(shí)踐與操作:

(1)①利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母(保留作圖痕跡,不寫作法):作線段AC的垂直平分線MN,垂足為O;

②連接BO,并延長BO到點(diǎn)D,使得OD=BO,連接AD、CD;

③分別在OA、OC的延長線上取點(diǎn)E、F,使AE=CF,連接BF、FD、DE、EB.

推理與運(yùn)用:

(2)①求證:四邊形BFDE是平行四邊形;

②若AB=4,AC=6,求當(dāng)AE的長為多少時(shí),四邊形BFDE是矩形.

查看答案和解析>>

科目:czsx 來源: 題型:解答題

11.已知:如圖,Rt△ABC中,∠BAC=90°.
(1)按要求作出圖形:
①延長BC到點(diǎn)D,使CD=BC;
②延長CA到點(diǎn)E,使AE=2CA;
③連接AD,BE.
(2)猜想(1)中線段AD與BE的大小關(guān)系,并證明你的結(jié)論.
解:(1)完成作圖
(2)AD與BE的大小關(guān)系是AD=BE.

查看答案和解析>>

科目:czsx 來源: 題型:解答題

2.如圖所示,已知AD是△ABC的中線,按要求作圖并回答問題:
(1)畫出△ABC關(guān)于點(diǎn)D的對稱三角形:(不要求寫畫法);
(2)根據(jù)你所畫出的圖形,試說明AD<$\frac{1}{2}$(AB+AC).

查看答案和解析>>

科目:czsx 來源: 題型:解答題

7.如圖,已知△ABC.
(1)實(shí)踐與操作:
利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母(保留作圖痕跡,不寫作法)
①作BC邊上的高AD;
②作△ABC的角平分線BE; 
(2)綜合與運(yùn)用;
若△ABC中,AB=AC且∠CAB=36°,
請根據(jù)作圖和已知寫出符合括號內(nèi)要求的正確結(jié)論;
結(jié)論1:∠ABE=∠CBE=∠CAB=36°,∠BAD=∠CAD;(關(guān)于角)
結(jié)論2:BD=DC,AE=BE,BC=BE;(關(guān)于線段)
結(jié)論3:△ABE,△BCE都是等腰三角形.(關(guān)于三角形)

查看答案和解析>>

科目:czsx 來源: 題型:解答題

5.已知Rt△ABC,AB=AC,∠BAC=90°,點(diǎn)D為直線BC上的一動點(diǎn)(點(diǎn)D不與B、C重合),以AD為邊作Rt△ADE(其中AD=AE,∠DAE=90°A、D、E按逆時(shí)針排列),連接CE.
(1)如圖1,當(dāng)點(diǎn)D在邊BC上時(shí),
①請寫出BD和CE之間存在數(shù)量關(guān)系和位置關(guān)系,并說明理由;
②$\sqrt{2}$AC=CE+CD的關(guān)系是否成立,并說明理由;
(2)如圖2,當(dāng)點(diǎn)D在邊BC的延長線上且其他條件不變時(shí),(1)中AC、CE、CD之間存在的數(shù)量關(guān)系是否成立?若不成立,請直接寫出AC、CE、CD之間存在的數(shù)量關(guān)系,不證明.
(3)如圖3,當(dāng)點(diǎn)D在邊CB的延長線上且其他條件不變時(shí),補(bǔ)全圖形(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡),并直接寫出AC、CE、CD之間存在的數(shù)量關(guān)系,不證明.

查看答案和解析>>

科目:czsx 來源: 題型:

(1)尺規(guī)作圖.

要求:寫出作法(用詞準(zhǔn)確精煉);保留作圖痕跡(圖形清晰,規(guī)范),已知:如圖△ABC.
求作:△ABC的內(nèi)角平分線AD.
作法:
(2)如圖2,在直角坐標(biāo)系中,第一次將△OAB變換成△OA1B1,第二次將△OA1B1變換成△OA2B2,-----依此類推.已知A(1,3),A1(2,3),A2(4,3),A3(8,3),…;B(2,0),B1(4,0),B2(8,0),B3(16,0),….
①觀察每次變換三角形的頂點(diǎn)變化規(guī)律,按此變換規(guī)律,經(jīng)過
6
6
次變換后,A、B的對應(yīng)點(diǎn)坐標(biāo)分別為(64,3)、(128,0).
②若按第①小題找到的規(guī)律將△OAB進(jìn)行了n次變換,得到△OAnBn,推測An的坐標(biāo)是
(2n,3)
(2n,3)
,Bn的坐標(biāo)是
(2n+1,0)
(2n+1,0)

查看答案和解析>>

科目:czsx 來源: 題型:解答題

(1)尺規(guī)作圖.

要求:寫出作法(用詞準(zhǔn)確精煉);保留作圖痕跡(圖形清晰,規(guī)范),已知:如圖△ABC.
求作:△ABC的內(nèi)角平分線AD.
作法:
(2)如圖2,在直角坐標(biāo)系中,第一次將△OAB變換成△OA1B1,第二次將△OA1B1變換成△OA2B2,-----依此類推.已知A(1,3),A1(2,3),A2(4,3),A3(8,3),…;B(2,0),B1(4,0),B2(8,0),B3(16,0),….
①觀察每次變換三角形的頂點(diǎn)變化規(guī)律,按此變換規(guī)律,經(jīng)過______次變換后,A、B的對應(yīng)點(diǎn)坐標(biāo)分別為(64,3)、(128,0).
②若按第①小題找到的規(guī)律將△OAB進(jìn)行了n次變換,得到△OAnBn,推測An的坐標(biāo)是______,Bn的坐標(biāo)是______.

查看答案和解析>>

科目:czsx 來源:2012年山東省青島市李滄區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

【問題引入】
幾個(gè)人拎著水桶在一個(gè)水龍頭前面排隊(duì)打水,水桶有大有?。麄冊撛鯓优抨?duì)才能使得總的排隊(duì)時(shí)間最短?
假設(shè)只有兩個(gè)人時(shí),設(shè)大桶接滿水需要T分鐘,小桶接滿水需要t分鐘(顯然T>t),若拎著大桶者在拎著小桶者之前,則拎大桶者可直接接水,只需等候T分鐘,拎小桶者一共等候了(T+t)分鐘,兩人一共等候了(2T+t)分鐘;反之,若拎小桶者在拎大桶者前面,容易求出出兩人接滿水等候(T+2t)分鐘.可見,要使總的排隊(duì)時(shí)間最短,拎小桶者應(yīng)排在拎大桶者前面.這樣,我們可以猜測,幾個(gè)人拎著水桶在一個(gè)水龍頭前面排隊(duì)打水,要使總的排隊(duì)時(shí)間最短,需將他們按水桶從小到大排隊(duì).
規(guī)律總結(jié):
事實(shí)上,只要不按從小到大的順序排隊(duì),就至少有緊挨著的兩個(gè)人拎著大桶者排在拎小桶者之前,仍設(shè)大桶接滿水需要T分鐘,小桶接滿水需要t分鐘,并設(shè)拎大桶者開始接水時(shí)已等候了m分鐘,這樣拎大桶者接滿水一共等候了(m+T)分鐘,拎小桶者一共等候了(m+T+t)分鐘,兩人一共等候了(2m+2T+t)分鐘,在其他人位置不變的前提下,讓這兩個(gè)人交還位置,即局部調(diào)整這兩個(gè)人的位置,同樣介意計(jì)算兩個(gè)人接滿水共等候了______分鐘,共節(jié)省了______分鐘,而其他人等候的時(shí)間未變,這說明只要存在有緊挨著的兩個(gè)人是拎大桶者在拎小桶者之前都可以這樣調(diào)整,從而使得總等候時(shí)間減少.這樣經(jīng)過一系列調(diào)整后,整個(gè)隊(duì)伍都是從小打到排列,就打到最優(yōu)狀態(tài),總的排隊(duì)時(shí)間就最短.
【方法探究】
一般的,對某些設(shè)計(jì)多個(gè)可變對象的數(shù)學(xué)問題,先對其少數(shù)對象進(jìn)行調(diào)整,其他對象暫時(shí)保持不變,從而化難為易,取得問題的局部解決.經(jīng)過若干次這種局部的調(diào)整,不斷縮小范圍,逐步逼近目標(biāo),最終使問題得到解決,這種數(shù)學(xué)思想就叫做局部調(diào)整法.
【實(shí)踐應(yīng)用1】
如圖1在銳角△ABC中,AB=,∠BAC=45°,∠BAC的平分線交BC于點(diǎn)D,M、N分別是AD和AB上的動點(diǎn),則BM+MN的最小值是多少?
解析:
(1)先假定N為定點(diǎn),調(diào)整M到合適的位置使BM+MN有最小值(相對的),容易想到,在AC上作AN′=AN(即作點(diǎn)N關(guān)于AD的對稱點(diǎn)N'),連接BN′交AD于M,則M點(diǎn)是使BM+MN有相對最小值的點(diǎn).(如圖2,M點(diǎn)是確定方法找到的)
(2)在考慮點(diǎn)N的位置,使BM+MN最終達(dá)到最小值.可以理解,BM+MN=BM+MN′,所以要使BM+MN′有最小值,只需使______,此時(shí)BM+MN的最小值是______.
【實(shí)踐應(yīng)用2】
如圖3,把邊長是3的正方形等分成9個(gè)小正方形,在有陰影的小正方形內(nèi)(包括邊界)分別取點(diǎn)P、R,于已知格點(diǎn)Q(每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn))構(gòu)成三角形,則△PQR的最大面積是______,請?jiān)趫D4中畫出面積最大時(shí)的△PQR的圖形.

查看答案和解析>>

科目:czsx 來源:2014-2015學(xué)年四川省階段S校九年級聯(lián)考二數(shù)學(xué)試卷(解析版) 題型:解答題

(9分)【問題引入】

幾個(gè)人拎著水桶在一個(gè)水龍頭前面排隊(duì)打水,水桶有大有?。麄冊撛鯓优抨?duì)才能使得總的排隊(duì)時(shí)間最短?

假設(shè)只有兩個(gè)人時(shí),設(shè)大桶接滿水需要T分鐘,小桶接滿水需要t分鐘(顯然T>t),若拎著大桶者在拎小桶者之前,則拎大桶者可直接接水,只需等候T分鐘,拎小桶者一共等候了(T+t)分鐘,兩人一共等候了(2T+t)分鐘;反之,若拎小桶者在拎大桶者之前,容易求出兩人接滿水等候(T+2t)分鐘??梢?,要使總的排隊(duì)時(shí)間最短。拎小桶者應(yīng)排在拎大桶者前面。這樣,我們可以猜測,幾個(gè)人拎著水桶在一個(gè)水龍頭前面排隊(duì)打水,要使總的排隊(duì)時(shí)間最短,需將他們按水桶從小到大排隊(duì).

規(guī)律總結(jié):

事實(shí)上,只要不按照從小到大的順序排隊(duì),就至少有緊挨著的兩個(gè)人拎大桶者排在拎小桶者之前,仍設(shè)大桶接滿水需要T分鐘,小桶接滿水需t分鐘,并設(shè)拎大桶者開始接水時(shí)已經(jīng)等候了m分鐘,這樣拎大桶者接滿水一共等候了(m+T)分鐘,拎小桶者接滿水一共等候了(m+T+t)分鐘,兩人共等候了(2m+2T+t)分鐘,在其他人位置不變的前提下,讓這兩個(gè)人交換位置,即局部調(diào)整這兩個(gè)人的位置,同樣可以計(jì)算兩個(gè)人接滿水共等候了 __ ___分鐘,共節(jié)省了 _________分鐘,而其他人的等候時(shí)間未變。這說明只要存在有緊挨著的兩個(gè)人是拎大桶者在拎小桶者前,都可以這樣局部調(diào)整,從而使得總等候時(shí)間減少。這樣經(jīng)過一系列調(diào)整之后,整個(gè)隊(duì)伍都是從小到大排列,就達(dá)到最優(yōu)狀態(tài),總的排隊(duì)時(shí)間就最短.

【方法探究】

一般地,對某些涉及多個(gè)可變對象的數(shù)學(xué)問題,先對其少數(shù)對象進(jìn)行調(diào)整,其他對象暫時(shí)保持不變,從而化難為易,取得問題的局部解決.經(jīng)過若干次這種局部的調(diào)整,不斷縮小范圍,逐步逼近目標(biāo),最終使問題得到解決,這種數(shù)學(xué)思想方法就叫做局部調(diào)整法.

【實(shí)踐應(yīng)用1】

如圖1,在銳角△ABC中,AB=4,∠BAC=45°,∠BAC的平分線交BC于點(diǎn)D,M、N分別是AD和AB上的動點(diǎn),則BM+MN的最小值是多少?

解析:(1)先假定N為定點(diǎn),調(diào)整M到合適位置,使BM+MN有最小值(相對的).

容易想到,在AC上作AN′=AN(即作點(diǎn)N關(guān)于AD的對稱點(diǎn)N′),連接BN′交AD于M,則M點(diǎn)是使BM+MN有相對最小值的點(diǎn).(如圖2,M點(diǎn)確定方法找到)

(2)再考慮點(diǎn)N的位置,使BM+MN最終達(dá)到最小值.

可以理解,BM+MN = BM+MN′,所以要使BM+MN′有最小值,只需使 ,此時(shí)BM+MN的最小值為 .

【實(shí)踐應(yīng)用2】

如圖,把邊長是3的正方形等分成9個(gè)小正方形,在有陰影的兩個(gè)小正方形內(nèi)(包括邊界)分別任取點(diǎn)P、R,與已知格點(diǎn)Q(每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn))構(gòu)成三角形,求△PQR的最大面積,并在圖2中畫出面積最大時(shí)的△PQR的圖形.

查看答案和解析>>