題目列表(包括答案和解析)
①焦距為n-m;②短軸長(zhǎng)為
;③離心率e=
;④以AB方向?yàn)閤軸的正方向,以AB中點(diǎn)O為坐標(biāo)原點(diǎn),則左準(zhǔn)線(xiàn)方程為x=
.
其中正確的說(shuō)法有______________(只填序號(hào)即可).
已知點(diǎn)
為圓
上的動(dòng)點(diǎn),且
不在
軸上,
軸,垂足為
,線(xiàn)段
中點(diǎn)
的軌跡為曲線(xiàn)
,過(guò)定點(diǎn)![]()
任作一條與
軸不垂直的直線(xiàn)
,它與曲線(xiàn)
交于
、
兩點(diǎn)。
(I)求曲線(xiàn)
的方程;
(II)試證明:在
軸上存在定點(diǎn)
,使得
總能被
軸平分
【解析】第一問(wèn)中設(shè)
為曲線(xiàn)
上的任意一點(diǎn),則點(diǎn)
在圓
上,
∴
,曲線(xiàn)
的方程為![]()
第二問(wèn)中,設(shè)點(diǎn)
的坐標(biāo)為
,直線(xiàn)
的方程為
, ………………3分
代入曲線(xiàn)
的方程
,可得 ![]()
∵
,∴![]()
確定結(jié)論直線(xiàn)
與曲線(xiàn)
總有兩個(gè)公共點(diǎn).
然后設(shè)點(diǎn)
,
的坐標(biāo)分別
,
,則
,
要使
被
軸平分,只要
得到。
(1)設(shè)
為曲線(xiàn)
上的任意一點(diǎn),則點(diǎn)
在圓
上,
∴
,曲線(xiàn)
的方程為
. ………………2分
(2)設(shè)點(diǎn)
的坐標(biāo)為
,直線(xiàn)
的方程為
, ………………3分
代入曲線(xiàn)
的方程
,可得
,……5分
∵
,∴
,
∴直線(xiàn)
與曲線(xiàn)
總有兩個(gè)公共點(diǎn).(也可根據(jù)點(diǎn)M在橢圓
的內(nèi)部得到此結(jié)論)
………………6分
設(shè)點(diǎn)
,
的坐標(biāo)分別
,
,則
,
要使
被
軸平分,只要
,
………………9分
即
,
, ………………10分
也就是
,
,
即
,即只要
………………12分
當(dāng)
時(shí),(*)對(duì)任意的s都成立,從而
總能被
軸平分.
所以在x軸上存在定點(diǎn)
,使得
總能被
軸平分
已知圓M:
定點(diǎn)
,點(diǎn)P為圓M上的動(dòng)點(diǎn),點(diǎn)Q在NP上,點(diǎn)G在MP上,且滿(mǎn)足
.
(Ⅰ)求點(diǎn)G的軌跡C的方程;
(Ⅱ)過(guò)點(diǎn)(2,0)作直線(xiàn)l,與曲線(xiàn)C交于A(yíng),B兩點(diǎn),O是坐標(biāo)原點(diǎn),設(shè)
,是否存在這樣的直線(xiàn)l,使四邊形OASB的對(duì)角線(xiàn)相等(即|OS|=|AB|)?若存在,求出直線(xiàn)l的方程;若不存在,試說(shuō)明理由.
(09年長(zhǎng)郡中學(xué)一模文)(13分)
已知圓
,定點(diǎn)
,點(diǎn)
為圓
上的動(dòng)點(diǎn),點(diǎn)
在
上,點(diǎn)
在
上,且滿(mǎn)足![]()
(I)求點(diǎn)
的軌跡
的方程;
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com