題目列表(包括答案和解析)
已知![]()
(1)求函數(shù)
在
上的最小值
(2)對(duì)一切的
恒成立,求實(shí)數(shù)a的取值范圍
(3)證明對(duì)一切
,都有
成立
【解析】第一問中利用
當(dāng)
時(shí),
在
單調(diào)遞減,在
單調(diào)遞增
,當(dāng)![]()
,即
時(shí),
,![]()
![]()
第二問中,
,則
設(shè)
,
則
,
單調(diào)遞增,
,
,
單調(diào)遞減,
,因?yàn)閷?duì)一切
,
恒成立,
第三問中問題等價(jià)于證明
,
,
由(1)可知
,
的最小值為
,當(dāng)且僅當(dāng)x=
時(shí)取得
設(shè)
,
,則
,易得![]()
。當(dāng)且僅當(dāng)x=1時(shí)取得.從而對(duì)一切
,都有
成立
解:(1)
當(dāng)
時(shí),
在
單調(diào)遞減,在
單調(diào)遞增
,當(dāng)![]()
,即
時(shí),
,![]()
…………4分
(2)
,則
設(shè)
,
則
,
單調(diào)遞增,
,
,
單調(diào)遞減,
,因?yàn)閷?duì)一切
,
恒成立,
…………9分
(3)問題等價(jià)于證明
,
,
由(1)可知
,
的最小值為
,當(dāng)且僅當(dāng)x=
時(shí)取得
設(shè)
,
,則
,易得![]()
。當(dāng)且僅當(dāng)x=1時(shí)取得.從而對(duì)一切
,都有
成立
設(shè)向量
,
,其中
,由不等式
恒成立,可以證明(柯西)不等式
(當(dāng)且僅當(dāng)
∥
,即
時(shí)等號(hào)成立),己知
,若
恒成立,利用可西不等式可求得實(shí)數(shù)
的取值范圍是
設(shè)向量
,
,其中
,由不等式
恒成立,可以證明(柯西)不等式
(當(dāng)且僅當(dāng)
∥
,即
時(shí)等號(hào)成立),己知
,若
恒成立,利用可西不等式可求得實(shí)數(shù)
的取值范圍是
已知函數(shù)
,(
),![]()
(1)若曲線
與曲線
在它們的交點(diǎn)(1,c)處具有公共切線,求a,b的值
(2)當(dāng)
時(shí),若函數(shù)
的單調(diào)區(qū)間,并求其在區(qū)間(-∞,-1)上的最大值。
【解析】(1)
,
∵曲線
與曲線
在它們的交點(diǎn)(1,c)處具有公共切線
∴
,![]()
∴![]()
(2)令
,當(dāng)
時(shí),![]()
令
,得![]()
時(shí),
的情況如下:
|
x |
|
|
|
|
|
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
|
|
|
|
所以函數(shù)
的單調(diào)遞增區(qū)間為
,
,單調(diào)遞減區(qū)間為![]()
當(dāng)
,即
時(shí),函數(shù)
在區(qū)間
上單調(diào)遞增,
在區(qū)間
上的最大值為
,
當(dāng)
且
,即
時(shí),函數(shù)
在區(qū)間
內(nèi)單調(diào)遞增,在區(qū)間
上單調(diào)遞減,
在區(qū)間
上的最大值為![]()
當(dāng)
,即a>6時(shí),函數(shù)
在區(qū)間
內(nèi)單調(diào)遞贈(zèng),在區(qū)間
內(nèi)單調(diào)遞減,在區(qū)間
上單調(diào)遞增。又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244511088175760_ST.files/image040.png">
所以
在區(qū)間
上的最大值為
。
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com