題目列表(包括答案和解析)
(本題滿分18分,第(1)小題6分,第(2)小題6分,第(3)小題6分)
若數(shù)列
滿足:
是常數(shù)),則稱數(shù)列
為二階線性遞推數(shù)列,且定義方程
為數(shù)列
的特征方程,方程的根稱為特征根; 數(shù)列
的通項公式
均可用特征根求得:
①若方程
有兩相異實根
,則數(shù)列通項可以寫成
,(其中
是待定常數(shù));
②若方程
有兩相同實根
,則數(shù)列通項可以寫成
,(其中
是待定常數(shù));
再利用
可求得
,進而求得
.
根據(jù)上述結論求下列問題:
(1)當
,
(
)時,求數(shù)列
的通項公式;
(2)當
,
(
)時,求數(shù)列
的通項公式;
(3)當
,
(
)時,記
,若
能被數(shù)
整除,求所有滿足條件的正整數(shù)
的取值集合.
(本題滿分16分)已知:圓C過定點A(0,p),圓心C在拋物線x2=2py上運動,若MN為圓C在X軸上截和的弦,設|AM|=m,|AN|=n,∠MAN=α,
(1).當點C運動時,|MN|是否變化?寫出并證明你的結論;
(2).求
的最大值,并求取得這個最大值時α的值和此時圓C的方程.
(本題滿分16分)已知:圓C過定點A(0,p),圓心C在拋物線x2=2py上運動,若MN為圓C在X軸上截和的弦,設|AM|=m,|AN|=n,∠MAN=α,
(1).當點C運動時,|MN|是否變化?寫出并證明你的結論;
(2).求
的最大值,并求取得這個最大值時α的值和此時圓C的方程.
已知函數(shù)
,
.
(Ⅰ)若函數(shù)
和函數(shù)
在區(qū)間
上均為增函數(shù),求實數(shù)
的取值范圍;
(Ⅱ)若方程
有唯一解,求實數(shù)
的值.
【解析】第一問,
當0<x<2時,
,當x>2時,
,
要使
在(a,a+1)上遞增,必須![]()
![]()
如使
在(a,a+1)上遞增,必須
,即![]()
由上得出,當
時
,
在
上均為增函數(shù)
(Ⅱ)中方程
有唯一解
有唯一解
設
(x>0)
隨x變化如下表
|
x |
|
|
|
|
|
- |
|
+ |
|
|
|
極小值 |
|
由于在
上,
只有一個極小值,![]()
的最小值為-24-16ln2,
當m=-24-16ln2時,方程
有唯一解得到結論。
(Ⅰ)解:
當0<x<2時,
,當x>2時,
,
要使
在(a,a+1)上遞增,必須![]()
![]()
如使
在(a,a+1)上遞增,必須
,即![]()
由上得出,當
時
,
在
上均為增函數(shù) ……………6分
(Ⅱ)方程
有唯一解
有唯一解
設
(x>0)
隨x變化如下表
|
x |
|
|
|
|
|
- |
|
+ |
|
|
|
極小值 |
|
由于在
上,
只有一個極小值,![]()
的最小值為-24-16ln2,
當m=-24-16ln2時,方程
有唯一解
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com