欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

(6)設函數則關于x的方程 查看更多

 

題目列表(包括答案和解析)

設函數則關于x的方程的根的情況,有下列說法:

①存在實數k,使得方程恰有1個實數根

②存在實數k,使得方程恰有2個不相等的實數根

③存在實數k,使得方程恰有3個不相等的實數根

④存在實數k,使得方程恰有4個不相等的實數根

其中正確的是(    )

A.①③ B.①②         C.②④         D.③④

 

查看答案和解析>>

設函數則關于x的方程的根的情況,有下列說法:
①存在實數k,使得方程恰有1個實數根
②存在實數k,使得方程恰有2個不相等的實數根
③存在實數k,使得方程恰有3個不相等的實數根
④存在實數k,使得方程恰有4個不相等的實數根
其中正確的是(   )

A.①③B.①②C.②④D.③④

查看答案和解析>>

設函數則關于x的方程的根的情況,有下列說法:
①存在實數k,使得方程恰有1個實數根
②存在實數k,使得方程恰有2個不相等的實數根
③存在實數k,使得方程恰有3個不相等的實數根
④存在實數k,使得方程恰有4個不相等的實數根
其中正確的是(   )
A.①③B.①②C.②④D.③④

查看答案和解析>>

設函數則關于x的方程fx)=x的解的個數為               

A.1                            B.2                            C.3                           D.4

查看答案和解析>>

設函數則關于x的方程

解的個數為(   

A1                 B2              C3              D4

 

查看答案和解析>>

 

一.選擇題

(1)D      (2)A     (3)B       (4)C       (5)B     (6)C

(7)B      (8)C     (9)A       (10)C      (11)B    (12)D

二.填空題

(13)4   (14)0.75   (15)9    (16)

三.解答題

(17)解:由

                             

得    又

于是 

      

(18)解:(Ⅰ)設A、B、C分別為甲、乙、丙三臺機床各自加工的零件是一等品的事件.

  由①、③得  代入②得  27[P(C)]2-51P(C)+22=0.

解得  (舍去).

將     分別代入 ③、②  可得 

即甲、乙、丙三臺機床各加工的零件是一等品的概率分別是

(Ⅱ)記D為從甲、乙、丙加工的零件中各取一個檢驗,至少有一個一等品的事件,

則 

故從甲、乙、丙加工的零件中各取一個檢驗,至少有一個一等品的概率為

 

(19)(Ⅰ)證明  因為底面ABCD是菱形,∠ABC=60°,

由PA2+AB2=2a2=PB2   知PA⊥AB.

同理,PA⊥AD,所以PA⊥平面ABCD.

(Ⅱ)解  作EG//PA交AD于G,

由PA⊥平面ABCD.

知EG⊥平面ABCD.作GH⊥AC于H,連結EH,

則EH⊥AC,∠EHG即為二面角的平面角.

又PE : ED=2 : 1,所以

從而    

(Ⅲ)解法一  以A為坐標原點,直線AD、AP分別為y軸、z軸,過A點垂直平面PAD的直線為x軸,建立空間直角坐標系如圖.由題設條件,相關各點的坐標分別為

  • <blockquote id="8aci2"></blockquote>
      <strike id="8aci2"><center id="8aci2"></center></strike>
      • 所以

        設點F是棱PC上的點,

               令   得

        解得      即 時,

        亦即,F是PC的中點時,、、共面.

        又  BF平面AEC,所以當F是棱PC的中點時,BF//平面AEC.

        解法二  當F是棱PC的中點時,BF//平面AEC,證明如下,

        <fieldset id="8aci2"><source id="8aci2"></source></fieldset>

          由   知E是MD的中點.

          連結BM、BD,設BDAC=O,則O為BD的中點.

          所以  BM//OE.  ②

          由①、②知,平面BFM//平面AEC.

          又  BF平面BFM,所以BF//平面AEC.

          證法二

          因為 

                   

          所以  、、共面.

          又 BF平面ABC,從而BF//平面AEC.

          (20)解:(Ⅰ)

          (i)當a=0時,令

          上單調遞增;

          上單調遞減.

          (ii)當a<0時,令

          上單調遞減;

          上單調遞增;

          上單調遞減.

          (Ⅱ)(i)當a=0時,在區(qū)間[0,1]上的最大值是

          (ii)當時,在區(qū)間[0,1]上的最大值是.

          (iii)當時,在區(qū)間[0,1]上的最大值是

          (21)解:(Ⅰ)依題意,可設直線AB的方程為 代入拋物線方程得   

               ①

          設A、B兩點的坐標分別是 、、x2是方程①的兩根.

          所以     

          由點P(0,m)分有向線段所成的比為,

          又點Q是點P關于原點的對稱點,

          故點Q的坐標是(0,-m),從而.

                         

                         

          所以 

          (Ⅱ)由 得點A、B的坐標分別是(6,9)、(-4,4).

            得

          所以拋物線 在點A處切線的斜率為

          設圓C的方程是

          解之得

          所以圓C的方程是 

          即 

          (22)(Ⅰ)證明:設點Pn的坐標是,由已知條件得

          點Qn、Pn+1的坐標分別是:

          由Pn+1在直線l1上,得 

          所以    即 

          (Ⅱ)解:由題設知 又由(Ⅰ)知 ,

          所以數列  是首項為公比為的等比數列.

          從而 

          (Ⅲ)解:由得點P的坐標為(1,1).

          所以 

             

          (i)當時,>1+9=10.

          而此時 

          (ii)當時,<1+9=10.

          而此時