題目列表(包括答案和解析)
已知函數(shù)
.
(1)試求
的值域;
(2)設(shè)
,若對(duì)
,
,恒
成立,試求實(shí)數(shù)
的取值范圍
【解析】第一問(wèn)利用![]()
![]()
第二問(wèn)中若
,則
,即當(dāng)
時(shí),
,又由(Ⅰ)知![]()
若對(duì)
,
,恒有
成立,即![]()
轉(zhuǎn)化得到。
解:(1)函數(shù)可化為
,
……5分
(2) 若
,則
,即當(dāng)
時(shí),
,又由(Ⅰ)知
. …………8分
若對(duì)
,
,恒有
成立,即![]()
,
![]()
,即
的取值范圍是![]()
已知函數(shù)
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)設(shè)
,若對(duì)任意
,
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
【解析】第一問(wèn)利用
的定義域是
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函數(shù)
的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是![]()
第二問(wèn)中,若對(duì)任意
不等式
恒成立,問(wèn)題等價(jià)于
只需研究最值即可。
解: (I)
的定義域是
......1分
............. 2分
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函數(shù)
的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是
........4分
(II)若對(duì)任意
不等式
恒成立,
問(wèn)題等價(jià)于
,
.........5分
由(I)可知,在
上,x=1是函數(shù)極小值點(diǎn),這個(gè)極小值是唯一的極值點(diǎn),
故也是最小值點(diǎn),所以
; ............6分
![]()
當(dāng)b<1時(shí),
;
當(dāng)
時(shí),
;
當(dāng)b>2時(shí),
;
............8分
問(wèn)題等價(jià)于![]()
........11分
解得b<1 或
或
即
,所以實(shí)數(shù)b的取值范圍是
| α |
| β |
| α |
| β |
| α |
| β |
| α |
| β |
| x |
| y |
| x+y |
已知函數(shù)
,
(1)求函數(shù)
的定義域;
(2)求函數(shù)
在區(qū)間
上的最小值;
(3)已知
,命題p:關(guān)于x的不等式
對(duì)函數(shù)
的定義域上的任意
恒成立;命題q:指數(shù)函數(shù)
是增函數(shù).若“p或q”為真,“p且q”為假,求實(shí)數(shù)m的取值范圍.
【解析】第一問(wèn)中,利用由
即![]()
![]()
第二問(wèn)中,
,
得:
![]()
,
![]()
第三問(wèn)中,由在函數(shù)
的定義域上
的任意
,
,當(dāng)且僅當(dāng)
時(shí)等號(hào)成立。當(dāng)命題p為真時(shí),
;而命題q為真時(shí):指數(shù)函數(shù)
.因?yàn)椤皃或q”為真,“p且q”為假,所以
當(dāng)命題p為真,命題q為假時(shí);當(dāng)命題p為假,命題q為真時(shí)分為兩種情況討論即可 。
解:(1)由
即![]()
![]()
(2)
,
得:
![]()
,
![]()
(3)由在函數(shù)
的定義域上
的任意
,
,當(dāng)且僅當(dāng)
時(shí)等號(hào)成立。當(dāng)命題p為真時(shí),
;而命題q為真時(shí):指數(shù)函數(shù)
.因?yàn)椤皃或q”為真,“p且q”為假,所以
當(dāng)命題p為真,命題q為假時(shí),![]()
當(dāng)命題p為假,命題q為真時(shí),
,
所以![]()
某同學(xué)用《幾何畫(huà)板》研究拋物線的性質(zhì):打開(kāi)《幾何畫(huà)板》軟件,繪制某拋物線
,在拋物線上任意畫(huà)一個(gè)點(diǎn)
,度量點(diǎn)
的坐標(biāo)
,如圖.
![]()
(Ⅰ)拖動(dòng)點(diǎn)
,發(fā)現(xiàn)當(dāng)
時(shí),
,試求拋物線
的方程;
(Ⅱ)設(shè)拋物線
的頂點(diǎn)為
,焦點(diǎn)為
,構(gòu)造直線
交拋物線
于不同兩點(diǎn)
、
,構(gòu)造直線
、
分別交準(zhǔn)線于
、
兩點(diǎn),構(gòu)造直線
、
.經(jīng)觀察得:沿著拋物線
,無(wú)論怎樣拖動(dòng)點(diǎn)
,恒有![]()
.請(qǐng)你證明這一結(jié)論.
(Ⅲ)為進(jìn)一步研究該拋物線
的性質(zhì),某同學(xué)進(jìn)行了下面的嘗試:在(Ⅱ)中,把“焦點(diǎn)
”改變?yōu)槠渌岸c(diǎn)![]()
”,其余條件不變,發(fā)現(xiàn)“
與
不再平行”.是否可以適當(dāng)更改(Ⅱ)中的其它條件,使得仍有“![]()
”成立?如果可以,請(qǐng)寫(xiě)出相應(yīng)的正確命題;否則,說(shuō)明理由.
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com