欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

(2)F`為曲線C的準線與x軸的交點.過點F’的直線l交曲線C于不同的兩點A.B.若D為AB中點.在x軸上存在一點E.使的取值范圍 查看更多

 

題目列表(包括答案和解析)

雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的中心、右焦點、左頂點、右準線與x軸的交點依次為O,F(xiàn),A,H則
|
AH
|
|
OF
|
的取值范圍為( 。
A、(2,+∞)
B、(0,2)
C、(1,2)
D、(0,+∞)

查看答案和解析>>

雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的中心、右焦點、左頂點、右準線與x軸的交點依次為O,F(xiàn),A,H則
|
AH
|
|
OF
|
的取值范圍為(  )
A.(2,+∞)B.(0,2)C.(1,2)D.(0,+∞)

查看答案和解析>>

 雙曲線的中心是原點O,它的虛軸長為,相應于焦點F(c,0)(c>0)的準線與x軸交于點A,且|OF|=3|OA|,過點F的直線與雙曲線交于P、Q兩點.

(1)求雙曲線的方程;

(2)若=0,求直線PQ的方程.

 

 

 

 

 

 

 

 

 

查看答案和解析>>

雙曲線數(shù)學公式=1(a>0,b>0)的中心、右焦點、左頂點、右準線與x軸的交點依次為O,F(xiàn),A,H則數(shù)學公式的取值范圍為


  1. A.
    (2,+∞)
  2. B.
    (0,2)
  3. C.
    (1,2)
  4. D.
    (0,+∞)

查看答案和解析>>

雙曲線的中心是原點O,它的虛軸長為,相應于焦點F(c,0)(c>0)的準線lx軸交于點A,且|OF|=3|OA|.過點F的直線與雙曲線交于PQ兩點.

(Ⅰ)求雙曲線的方程及離心率;

(Ⅱ)若,求直線PQ的方程.

查看答案和解析>>

一、選擇題(本大題共12小題,每題5分,共60分,在每小題的選項中,只有一項符合)

1

2

3

4

5

6

7

8

9

10

11

12

C

A

C

B

B

A

D

B

D

A

C

理D

文C

二、填空題:本大題共4小題,每小題4分,共16分

13.(?∞,?2)    14.(理):15    文:(-1,0)∪(0,1)

15.2               16.①②③④

三、解答題:本大題共6小題,共74分,解答應寫出文字說明,證明過程或演算步驟。

17.(12分)

   (1)

             =……………………………………2分

             =………………………………………………4分

………………………………6分

得f(x)的減區(qū)間:………………8分

   (2)f(x平移后:

        …………………………………………10分

要使g(x)為偶函數(shù),則

100080

18.(12分)

   (1)馬琳勝出有兩種情況,3:1或3:2

        ………………………… 6分

   (2)

       

分布列:    3      4     5

      P              ……………………10分

E= ………………………………………………12分

文科:前3次中獎的概率

……………………6分

(2)在本次活動中未中獎的概率為

  (1-p)10…………………………………………………………8分

恰在第10次中獎的概率為

(1-p)9p………………………………………………………………10分

………………………………12分

19.(12分)

<blockquote id="0f59n"><object id="0f59n"></object></blockquote>

        <big id="0f59n"><pre id="0f59n"></pre></big>

          <table id="0f59n"><acronym id="0f59n"></acronym></table>
          <ol id="0f59n"><form id="0f59n"></form></ol>

            EM是平行四邊形 …… 3分

            平面PAB ……5分

            (2)過Q做QF//PA  交AD于F

             QF⊥平面ABCD

            作FH⊥AC  H為垂足

            ∠QHF是Q―AC―D的平面角……8分

            設AF=x  則

            FD=2-x

            在Rt△QFH中,

            ……10分

            ∴Q為PD中點……12分

            解法2

            (1)如圖所示A(0,0,0)  B(1,0,0)C(1,1,0)D(0,2,0) p(0,0,1)

             M(0,1,……………………………………3分

            是平面PAB的法向量  

                故MC//平面PAB…………5分

            (2)設

            是平面QAC的法向量

            ………………………………9分

            為平面ACD的法向量,于是

            ∴Q為PD的中點…………………………………………12分

            20.經分析可知第n行有3n-2個數(shù),                  理科        文科

            前n-1行有                    

            第n行的第1個數(shù)是                   2分        4分

            (1)第10行第10個數(shù)是127                      4分         7分

            (2)表中第37行、38行的第1個數(shù)分別為1927,2036

            所以2008是此表中的第37行

            第2008-1927+1=82個數(shù)                         8分         14分

            (3)不存在

            第n行第1個數(shù)是

             第n+2行最后一個數(shù)是 

                                 =

            這3行共有  (3n-2)+[3(n+1)-2]+[3(n+2)-2]

                      =9n+3  個數(shù)                                   10分

            這3行沒有數(shù)之和

                                      12分

            此方程無正整數(shù)解.

            21.(理科14分,文科12分)                                            理科 文科

            (1)P(0,b)  M(a,0) 沒N(x,y) 由

                 由                  ②

            將②代入①得曲線C的軌跡方程為 y2 = 4x                              5分 6分

            (2)點F′(-1,0)  ,設直線ly = k (x+1) 代入y2 = 4x

            k2x2+2 (k2-2)x+k2=0

                                                         7分 8分

            設A(x1y1) B(x2y2) D(x0,y0) 則

            故直線DE方程為

            令y=0 得   

            的取值范圍是(3,+∞)                                   10分 12分

            (3)設點Q的坐標為(-1,t),過點Q的切線為:yt = k (x+1)

            代入y2 = 4x   消去 x整理得ky2-4y+4t+4k=0                            12分

            △=16-16k (t+k)    令

            兩切線l1,l2 的斜率k1k2是此方程的兩根

            k1?k2=-1    故l1l2                                          14分

            22.文科:依題意                         2分

                                                             4分

                      若f (x)在(-1,0)上是增函數(shù),則在(-1,1)上

                      ∵的圖象是開口向下的拋物線                            6分

            解之得 t≥5                                                 12分

            理科:

            (1)

                                                    2分

            x        0      (0,)         (,1)    1

                           ―         0        +

                -                  -4                -3

            所以    是減函數(shù)

                    是增函數(shù)                                   4分

            的值域為[-4,-3]                              6分

            (2)

            ∵a≥1 當

            時  g (x)↓

              時  g (x)∈[g (1),g (0)]=[1-2a3a2,-2a]                8分

            任給x1∈[0,1]  f (x1) ∈[-4,-3]

            存在x0∈[0,1]  使得  g (x0) = f (x1)

            則:[1-2a3a2,-2a]=[-4,-3]                                 10分

            即 

            又a≥1  故a的取值范圍為[1,]