題目列表(包括答案和解析)
如圖,已知⊙
中,直徑
垂直于弦
,垂足為
,
是
延長(zhǎng)線上一點(diǎn),
切⊙
于點(diǎn)
,連接
交
于點(diǎn)
,證明:![]()
![]()
【解析】本試題主要考查了直線與圓的位置關(guān)系的運(yùn)用。要證明角相等,一般運(yùn)用相似三角形來(lái)得到,或者借助于弦切角定理等等。根據(jù)
為⊙
的切線,∴
為弦切角
連接
∴
…注意到
是直徑且垂直弦
,所以
且
…利用
,可以證明。
解:∵
為⊙
的切線,∴
為弦切角
連接
∴
……………………4分
又∵
是直徑且垂直弦
∴
且
……………………8分
∴
∴ ![]()
已知數(shù)列
的前n項(xiàng)和
,數(shù)列
有
,
(1)求
的通項(xiàng);
(2)若
,求數(shù)列
的前n項(xiàng)和
.
【解析】第一問(wèn)中,利用當(dāng)n=1時(shí),![]()
當(dāng)
時(shí),![]()
得到通項(xiàng)公式
第二問(wèn)中,∵
∴
∴數(shù)列
是以2為首項(xiàng),2為公比的等比數(shù)列,利用錯(cuò)位相減法得到。
解:(1)當(dāng)n=1時(shí),
……………………1分
當(dāng)
時(shí),
……4分
又![]()
∴
……………………5分
(2)∵
∴
∴
……………………7分
又∵
,
∴ ![]()
∴數(shù)列
是以2為首項(xiàng),2為公比的等比數(shù)列,
∴
……………………9分
∴
∴
①
②
①-②得:![]()
∴![]()
已知在
中,
,
,
,解這個(gè)三角形;
【解析】本試題主要考查了正弦定理的運(yùn)用。由正弦定理得到:![]()
,然后又
![]()
又
再又
得到c。
解:由正弦定理得到:![]()
![]()
又
……4分
又
……8分
又
![]()
三棱柱
中,側(cè)棱與底面垂直,
,
,
分別是
,
的中點(diǎn).
(Ⅰ)求證:
平面
;
(Ⅱ)求證:
平面
;
(Ⅲ)求三棱錐![]()
的體積.
![]()
【解析】第一問(wèn)利連結(jié)
,
,∵M(jìn),N是AB,
的中點(diǎn)∴MN//
.
又∵
平面
,∴MN//平面
.
----------4分
⑵中年∵三棱柱ABC-A1B1C1中,側(cè)棱與底面垂直,∴四邊形
是正方形.∴
.∴
.連結(jié)
,
.
∴
,又N中
的中點(diǎn),∴
.
∵
與
相交于點(diǎn)C,∴MN
平面
. --------------9分
⑶中由⑵知MN是三棱錐M-
的高.在直角
中,
,
∴MN=
.又
.
.得到結(jié)論。
⑴連結(jié)
,
,∵M(jìn),N是AB,
的中點(diǎn)∴MN//
.
又∵
平面
,∴MN//平面
.
--------4分
⑵∵三棱柱ABC-A1B1C1中,側(cè)棱與底面垂直,
∴四邊形
是正方形.∴
.
∴
.連結(jié)
,
.
∴
,又N中
的中點(diǎn),∴
.
∵
與
相交于點(diǎn)C,∴MN
平面
. --------------9分
⑶由⑵知MN是三棱錐M-
的高.在直角
中,
,
∴MN=
.又
.
![]()
如圖,三棱錐
中,側(cè)面
底面
,
,且
,
.(Ⅰ)求證:
平面
;
(Ⅱ)若
為側(cè)棱PB的中點(diǎn),求直線AE與底面
所成角的正弦值.
![]()
【解析】第一問(wèn)中,利用由
知,
,
又AP=PC=2,所以AC=2
,
又AB=4, BC=2
,,所以
,所以
,即
,
又平面
平面ABC,平面
平面ABC=AC,
平面ABC,
平面ACP,所以
第二問(wèn)中結(jié)合取AC中點(diǎn)O,連接PO、OB,并取OB中點(diǎn)H,連接AH、EH,因?yàn)镻A=PC,所以PO⊥AC,同(Ⅰ)易證
平面ABC,又EH//PO,所以EH平面
ABC ,
則
為直線AE與底面ABC 所成角,
![]()
解
(Ⅰ) 證明:由用由
知,
,
又AP=PC=2,所以AC=2
,
又AB=4, BC=2
,,所以
,所以
,即
,
又平面
平面ABC,平面
平面ABC=AC,
平面ABC,
平面ACP,所以![]()
………………………………………………6分
(Ⅱ)如圖, 取AC中點(diǎn)O,連接PO、OB,并取OB中點(diǎn)H,連接AH、EH,
因?yàn)镻A=PC,所以PO⊥AC,同(Ⅰ)易證
平面ABC,
又EH//PO,所以EH平面
ABC ,
則
為直線AE與底面ABC 所成角,
且
………………………………………10分
又PO=1/2AC=
,也所以有EH=1/2PO=
,
由(Ⅰ)已證
平面PBC,所以
,即
,
故
,
于是![]()
所以直線AE與底面ABC 所成角的正弦值為![]()
![]()
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com