題目列表(包括答案和解析)
在△
中,已知
·
=9,sin
=cos
sin
,面積S
=6.
(Ⅰ)求△
的三邊的長(zhǎng);
(Ⅱ)設(shè)
是△
(含邊界)內(nèi)一點(diǎn),
到三邊
,
,
的距離分別為x,y和z,求x+y+z的取值范圍.
在
中,
是三角形的三內(nèi)角,
是三內(nèi)角對(duì)應(yīng)的三邊,已知
成等差數(shù)列,
成等比數(shù)列
(Ⅰ)求角
的大。
(Ⅱ)若
,求
的值.
【解析】第一問(wèn)中利用依題意
且
,故![]()
第二問(wèn)中,由題意
又由余弦定理知
![]()
,得到
,所以
,從而得到結(jié)論。
(1)依題意
且
,故
……………………6分
(2)由題意
又由余弦定理知
…………………………9分
即
故![]()
代入
得![]()
![]()
在
中,
,分別是角
所對(duì)邊的長(zhǎng),
,且![]()
(1)求
的面積;
(2)若
,求角C.
【解析】第一問(wèn)中,由
又∵
∴
∴
的面積為![]()
第二問(wèn)中,∵a =7 ∴c=5由余弦定理得:
得到b的值,然后又由余弦定理得:
又C為內(nèi)角 ∴![]()
解:(1)
………………2分
又∵
∴
……………………4分
∴
的面積為
……………………6分
(2)∵a =7 ∴c=5 ……………………7分
由余弦定理得:
∴
……………………9分
又由余弦定理得:
又C為內(nèi)角 ∴
……………………12分
另解:由正弦定理得:
∴
又
∴![]()
在
中,∠A:∠B=1:2,∠
的平分線
分⊿ACD與⊿BCD的面積比是3:2,
則
選擇題答題卡(請(qǐng)務(wù)必把答案填寫在答題卡內(nèi))
| 題號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 答案 |
|
|
|
|
|
|
|
|
|
(9分)如圖,在四棱錐P—ABCD中,底面ABCD為矩形,側(cè)棱PA⊥底面ABCD,AB=,BC=1,PA=2,E為PD的中點(diǎn).
(1)求直線BE與平面ABCD所成角的正切值;
(2)在側(cè)面PAB內(nèi)找一點(diǎn)N,使NE⊥面PAC,
并求出N點(diǎn)到AB和AP的距離.
![]()
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com