題目列表(包括答案和解析)
| 10-x |
| 10+x |
| 10-x |
| 10+x |
已知
中,內角
的對邊的邊長分別為
,且![]()
(I)求角
的大;
(II)若
求
的最小值.
【解析】第一問,由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,![]()
第二問,![]()
三角函數(shù)的性質運用。
解:(Ⅰ)由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,
(Ⅱ)由(Ⅰ)可知
,
,則當
,即
時,y的最小值為
.
| 10-x |
| 10+x |
| 10-x |
| 10+x |
已知
,設![]()
和
是方程
的兩個根,不等式
對任意實數(shù)
恒成立;
函數(shù)
有兩個不同的零點.求使“P且Q”為真命題的實數(shù)
的取值范圍.
【解析】本試題主要考查了命題和函數(shù)零點的運用。由題設x1+x2=a,x1x2=-2,
∴|x1-x2|=
=
.
當a∈[1,2]時,
的最小值為3. 當a∈[1,2]時,
的最小值為3.
要使|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+
=0的判別式
Δ=4m2-12(m+
)=4m2-12m-16>0,
得m<-1或m>4.
可得到要使“P∧Q”為真命題,只需P真Q真即可。
解:由題設x1+x2=a,x1x2=-2,
∴|x1-x2|=
=
.
當a∈[1,2]時,
的最小值為3.
要使|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+
=0的判別式
Δ=4m2-12(m+
)=4m2-12m-16>0,
得m<-1或m>4.
綜上,要使“P∧Q”為真命題,只需P真Q真,即![]()
解得實數(shù)m的取值范圍是(4,8]
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com