欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

(I)求的對稱軸方程, 查看更多

 

題目列表(包括答案和解析)

已知拋物線過點

(I)求拋物線的方程;

(II)已知圓心在軸上的圓過點,且圓在點的切線恰是拋物線在點的切線,求圓的方程;

(Ⅲ)如圖,點軸上一點,點是點關(guān)于原點的對稱點,過點作一條直線與拋物線交于兩點,若,證明: .

 

查看答案和解析>>

已知拋物線過點
(I)求拋物線的方程;
(II)已知圓心在軸上的圓過點,且圓在點的切線恰是拋物線在點的切線,求圓的方程;
(Ⅲ)如圖,點軸上一點,點是點關(guān)于原點的對稱點,過點作一條直線與拋物線交于兩點,若,證明: .

查看答案和解析>>

已知拋物線過點
(I)求拋物線的方程;
(II)已知圓心在軸上的圓過點,且圓在點的切線恰是拋物線在點的切線,求圓的方程;
(Ⅲ)如圖,點軸上一點,點是點關(guān)于原點的對稱點,過點作一條直線與拋物線交于兩點,若,證明: .

查看答案和解析>>

如圖,過拋物線x2=4y的對稱軸上任一點P(0,m)(m>0)作直線與拋物線交于A(x1,y1),B(x2,y2)兩點.
(I)若
AP
PB
(λ∈R)
,證明:λ=-
x1
x2
;
(II)在(I)條件下,若點Q是點P關(guān)于原點對稱點,證明:
QP
⊥(
QA
QB
)
;
(III)設(shè)直線AB的方程是x-2y+12=0,過A,B兩點的圓C與拋物線在點A處有共同的切線,求圓C的方程.

查看答案和解析>>

設(shè)二次函數(shù)滿足條件:①對稱軸方程是;②函數(shù)的圖象與直線相切。

(I)求的解析式;

(II)不等式的解集是,求的值。

查看答案和解析>>

 

一、選擇題:

       BDDCB  BBAAC  AC

二、填空題:

13.   14.6   15.    16.

17.解:(I)取AC的中點G,連接OG,EG,

      

       平面OEG

           5分

<span id="t2be2"></span>
        1. <rt id="t2be2"></rt>
        <center id="t2be2"></center>
        <span id="t2be2"></span>

        20090514

               平面ABC

              

               又

               又F為AB中點,

              

               ,

               平面SOF,

               平面SAB,

               平面SAB      10分

        18.解:

              

              

              

                    6分

           (I)由,

            得對稱軸方程     8分

           (II)由已知條件得,

              

              

                    12分

        19.解:設(shè)點,點共有16個:(0,0),(0,-1),(-1,0),(0,1),(1,0),

           (0,2),(2,0),(-1,-1),(-1,1),(1,-1),(-1,2),(2,-1),(1,1),(1,2),

           (2,1),(2,2)       3分

           (I)傾斜角為銳角,

               ,

               則點P有(-1,1),(1,-1),(-1,2),(2,-1),

                   6分

           (II)直線不平行于x軸且不經(jīng)過第一象限

           

               即     10分

               *點P有(-1,-1),(-1,0),

               概率      12分

        20.解:(I),直線AF2的方程為

               設(shè)

               則有

              

                   6分

           (II)假設(shè)存在點Q,使

              

                     8分

              

               *Q在以MN為直徑的圓(除去M,N點)上,

               圓心O(0,0),半徑為

               又點Q在圓

               *圓O與圓相離,假設(shè)不成立

               *上不存在符合題意的點Q。      12分

        21.解:(I)

               是等差數(shù)列

               又

                   2分

              

              

                    5分

               又

               為首項,以為公比的等比數(shù)列      6分

           (II)

              

               當(dāng)

               又               

               是單調(diào)遞增數(shù)列      9分

           (III)時,

              

               即

                      12分

        22.解L

               的值域為[0,1]        2分

               設(shè)的值域為A,

               ,

               總存在

              

              

           (1)當(dāng)時,

               上單調(diào)遞減,

              

              

                   5分

           (2)當(dāng)時,

              

               令

               (舍去)

               ①當(dāng)時,列表如下:

              

        0

        3

         

        -

        0

        +

         

        0

               ,

               則

                    9分

               ②當(dāng)時,時,

               函數(shù)上單調(diào)遞減

              

              

                      11分

               綜上,實數(shù)的取值范圍是      12分

        <rt id="t2be2"></rt>

        <rt id="t2be2"></rt>