題目列表(包括答案和解析)
(08年五市聯(lián)考理) (13分)橢圓
:
的兩焦點為
,橢圓上存在點
使![]()
(1)求橢圓離心率
的取值范圍;
(2)當(dāng)離心率
取最小值時,點
到橢圓上的點的最遠距離為![]()
①求此時橢圓
的方程;
②設(shè)斜率為
的直線
與橢圓
交于不同的兩點
,
為
的中點,問
兩點能否關(guān)于過
、
的直線對稱?若能,求出
的取值范圍;若不能,請說明理由。
(12分)橢圓C:
的兩個焦點分別為
,
是橢圓上一點,且滿足
。
(1)求離心率e的取值范圍;
(2)當(dāng)離心率e取得最小值時,點N( 0 , 3 )到橢圓上的點的最遠距離為
。
(i)求此時橢圓C的方程;
(ii)設(shè)斜率為
的直線l與橢圓C相交于不同的兩點A、B,Q為AB的中點,問A、B兩點能否關(guān)于過點P(0,
)、Q的直線對稱?若能,求出
的取值范圍;若不能,請說明理由。
(12分)橢圓C:
的兩個焦點分別為
,
是橢圓上一點,且滿足
。
(1)求離心率e的取值范圍;
(2)當(dāng)離心率e取得最小值時,點N( 0 , 3 )到橢圓上的點的最遠距離為
。
(i)求此時橢圓C的方程;
(ii)設(shè)斜率為
的直線l與橢圓C相交于不同的兩點A、B,Q為AB的中點,問A、B兩點能否關(guān)于過點P(0,
)、Q的直線對稱?若能,求出
的取值范圍;若不能,請說明理由。
(本小題滿分14分)
![]()
直線
是線段
的垂直平分線.設(shè)橢圓E的方程為
.
(1)當(dāng)
在
上移動時,求直線
斜率
的取值范圍;
(2)已知直線
與拋物線
交于A、B兩個不同點,
與橢圓
交于P、Q兩個不同點,設(shè)AB中點為
,OP中點為
,若
,求橢圓
離心率的范圍。
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com