題目列表(包括答案和解析)
(本小題滿分12分)
第8屆中學(xué)生模擬聯(lián)合國大會將在本校舉行,為了搞好接待工作,組委會招募了12名男志愿者和18名女志愿者.將這30名志愿者的身高編成如下莖葉圖(單位:cm):
![]()
男 女
15
7 7 8 9 9 9
9 8 16 0 0 1 2 4 5 8 9
8 6 5 0 17 2 5 6
7 4 2 1 18 0
1 0 19
若男生身高在180cm以上(包括180cm)定義為“高個子”, 在180cm以下(不包括180cm)定義為“非高個子”, 女生身高在170cm以上(包括170cm)定義為“高個子”,在170cm以下(不包括170cm)定義為“非高個子”.
(1)如果用分層抽樣的方法從“高個子”和“非高個子”中抽取6人,則應(yīng)分別抽取“高個子”、“非高個子”各幾人?
(2)從(1)中抽出的6人中選2人擔(dān)任領(lǐng)座員,那么至少有一人是“高個子”的概率是多少?
(本小題滿分13分)
為了了解高一學(xué)生的體能情況,某校抽取部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),圖中從左到右各小長方形面積之比為2:4:17:15:9:3,第二小組頻數(shù)為12.
![]()
(Ⅰ)第二小組的頻率是多少?樣本容量是多少?
(Ⅱ)若次數(shù)在110以上(含110次)為達(dá)標(biāo),試估計該學(xué)校全體高一學(xué)生的達(dá)標(biāo)率是多少?(Ⅲ)在這次測試中,學(xué)生跳繩次數(shù)的中位數(shù)、眾數(shù)各是是多少?(精確到0.1)
(本小題滿分12分)
編號為
的16名籃球運(yùn)動員在某次訓(xùn)練比賽中的得分記錄如下:
|
運(yùn)動員編號 |
|
|
|
|
|
|
|
|
|
得分 |
15 |
35 |
21 |
28 |
25 |
36 |
18 |
34 |
|
運(yùn)動員編號 |
|
|
|
|
|
|
|
|
|
得分 |
17 |
26 |
25 |
33 |
22 |
12 |
31 |
38 |
(Ⅰ)將得分在對應(yīng)區(qū)間內(nèi)的人數(shù)填入相應(yīng)的空格;
|
區(qū)間 |
|
|
|
|
人數(shù) |
|
|
|
(Ⅱ)從得分在區(qū)間
內(nèi)的運(yùn)動員中隨機(jī)抽取2人,
(i)用運(yùn)動員的編號列出所有可能的抽取結(jié)果;
(ii)求這2人得分之和大于50的概率.
(本小題滿分12分)
編號分別為
的16名籃球運(yùn)動員在某次比賽中得分記錄如下;
|
編號 |
A1 |
A2 |
A3 |
A4 |
A5 |
A6 |
A7 |
A8 |
|
得分 |
15 |
35 |
21 |
28 |
25 |
36 |
18 |
34 |
|
編號 |
A9 |
A10 |
A11 |
A12 |
A13 |
A14 |
A15 |
A16 |
|
得分 |
17 |
26 |
25 |
33 |
22 |
12 |
31 |
38 |
(Ⅰ)將得分在對應(yīng)區(qū)間的人數(shù)填入相應(yīng)的空格內(nèi):
|
區(qū) 間 |
|
|
|
|
人 數(shù) |
|
|
|
(Ⅱ)從得分在區(qū)間
內(nèi)的運(yùn)動員中隨機(jī)抽取2人.
(1)用運(yùn)動員編號列出所有可能的抽取結(jié)果;
(2)求這兩人得分之和大于50的概率.
(本小題滿分12分)
第8屆中學(xué)生模擬聯(lián)合國大會將在本校舉行,為了搞好接待工作,組委會招募了12名男志愿者和18名女志愿者.將這30名志愿者的身高編成如下莖葉圖(單位:cm):![]()
男 女
15 7 7 8 9 9 9
9 8 16 0 0 1 2 4 5 8 9
8 6 5 0 17 2 5 6
7 4 2 1 18 0
1 0 19
若男生身高在180cm以上(包括180cm)定義為“高個子”, 在180cm以下(不包括180cm)定義為“非高個子”, 女生身高在170cm以上(包括170cm)定義為“高個子”,在170cm以下(不包括170cm)定義為“非高個子”.
(1)如果用分層抽樣的方法從“高個子”和“非高個子”中抽取6人,則應(yīng)分別抽取“高個子”、“非高個子”各幾人?
(2)從(1)中抽出的6人中選2人擔(dān)任領(lǐng)座員,那么至少有一人是“高個子”的概率是多少?
一、填空題
1.
; 2.
; 3.
; 4.
; 5.
;
6.
;
7.
; 8.3; 9.
. 10.學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image217.gif)
11.
; 12.
; 13.
; 14.
.
二、解答題
15.解:(1)由
得:學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image229.gif)
,
由正弦定理知:
,
(2)
,學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image237.gif)
由余弦定理知:學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image239.gif)
16.解:(Ⅰ)證明:取
的中點
,連接學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image244.gif)
因為
是正三角形,
所以學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image248.gif)
又
是正三棱柱,
所以
面
,所以學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image254.gif)
所以有
面學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image258.gif)
因為
面學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image258.gif)
所以
;
(Ⅱ)
為
的三等分點,
.
連結(jié)
,
,
∵
,∴
.
∴
, ∴ 學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image279.gif)
又∵
面
,
面學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image283.gif)
∴
平面學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image283.gif)
17.解 (Ⅰ)設(shè)點P的坐標(biāo)為(x,y),由P(x,y)在橢圓上,得
學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image290.gif)
學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image292.gif)
又由
知
,
所以學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image298.gif)
(Ⅱ) 當(dāng)
時,點(
,0)和點(-
,0)在軌跡上.
當(dāng)
且
時,由
,得
.
又
,所以T為線段F2Q的中點.
在△QF
,所以有學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image316.gif)
綜上所述,點T的軌跡C的方程是
(Ⅲ) C上存在點M(
)使S=
的充要條件是學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image322.gif)
由③得
,由④得
所以,當(dāng)
時,存在點M,使S=
;
當(dāng)
時,不存在滿足條件的點M.
當(dāng)
時,
,
由
,
,
,得學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image340.gif)
18.解:(1)
(或
)(
)
(2)學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image348.gif)
當(dāng)且僅當(dāng)
,即V=
所以,博物館支付總費(fèi)用的最小值為7500元.
(3)解法1:由題意得不等式:
當(dāng)保護(hù)罩為正四棱錐形狀時,
,代入整理得:
,解得
;
當(dāng)保護(hù)罩為正四棱柱形狀時,
,代入整理得:
,解得學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image364.gif)
又底面正方形面積最小不得少于
,所以,底面正方形的面積最小可取
解法2. 解方程
,即
得兩個根為學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image372.gif)
由于函數(shù)
在
上遞減,在
上遞增,所以當(dāng)
時,總費(fèi)用超過8000元,所以V取得最小值
由于保護(hù)罩的高固定為
.所以當(dāng)保護(hù)罩為正四棱柱時,保護(hù)罩底面積最小,
m2
又底面正方形面積最小不得少于
,
,所以,底面正方形的面積最小可取
19.解:(Ⅰ)
令
得
當(dāng)
為增函數(shù);
當(dāng)
為減函數(shù),
可知
有極大值為
(Ⅱ)欲使
在
上恒成立,只需
在
上恒成立,
設(shè)學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image409.gif)
由(Ⅰ)知,
,
學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image415.gif)
(Ⅲ)
,由上可知
在
上單調(diào)遞增,
①,
同理
②
兩式相加得學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image427.gif)
20.解:(1)證明:因為學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image431.gif)
所以
即
可化為:學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image437.gif)
當(dāng)且僅當(dāng)
即
時
故
(2)因為學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image445.gif)
學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image447.gif)
=學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image449.gif)
學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image447.gif)
=學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image451.gif)
又由
可知
=學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image451.gif)
學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image453.gif)
即
=學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image451.gif)
解之得
故得
所以學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image465.gif)
學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image467.gif)
因此
的通項公式為..
(3)解:學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image472.gif)
學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image474.gif)
學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image476.gif)
所以學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image478.gif)
即S的最大值為學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image480.gif)
三、附加題
∵ÐDEF是公共角,
∴ΔDEF∽ΔCED. ∴ÐEDF=ÐC.
∵CD∥AP, ∴ÐC=Ð P.
∴ÐP=ÐEDF.
(2)∵ÐP=ÐEDF, ÐDEF=ÐPEA,
∴ΔDEF∽ΔPEA. ∴DE : PE=EF : EA.即EF?EP=DE?EA.
∵弦AD、BC相交于點E,∴DE?EA=CE?EB.∴CE?EB=EF?EP.
21B.法一:特殊點法
在直線
上任取兩點(2、1)和(3、3),…………1分
則
?學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image486.gif)
即得點
…………3 分
學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image484.gif)
即得點學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image494.gif)
將
和
分別代入
上得
學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image501.gif)
則矩陣
…………6 分
則
…………10 分
法二:通法
設(shè)
為直線
上任意一點其在M的作用下變?yōu)?sub>
…………1分
則學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image484.gif)
…………3分
代入
得:
其與
完全一樣得學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image515.gif)
則矩陣
…………6分
則
…………10分
化為
, ………4分
,
………6分
設(shè)動點P
,M
,則
, ………8分
又
,得
;
………10分
法二:以極點為坐標(biāo)原點建立直角坐標(biāo)系,
將直線方程
化為
,………………4分
設(shè)P
,M
,
,………6分
又MPO三點共線,
,
…………8分
轉(zhuǎn)化為極坐標(biāo)方程
. ………10分
21D.證明: ∵a、b、c均為實數(shù).
∴
(
+
)≥
≥
,當(dāng)a=b時等號成立;
(
+
)≥
≥
,當(dāng)b=c時等號成立;
(
+
)≥
≥
.
三個不等式相加即得
+
+
≥
+
+
,
當(dāng)且僅當(dāng)a=b=c時等號成立.
22.解:(I)以O(shè)為原點,OB,OC,OA分別為x,y,z軸建立空間直角坐標(biāo)系.
則有A(0,0,1),B(2,0,0),C(0,2,0),E(0,1,0).
cos<
>
.
由于異面直線BE與AC所成的角是銳角,故其余弦值是
.
(II)
,
,
設(shè)平面ABE的法向量為
,
則由
,
,得學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image582.gif)
取n=(1,2,2),
平面BEC的一個法向量為n2=(0,0,1),
.
由于二面角A-BE-C的平面角是n1與n2的夾角的補(bǔ)角,其余弦值是-
.
23.解:
的所有可能取值有6,2,1,-2;
,學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image591.gif)
,學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image595.gif)
故
的分布列為:
學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image195.gif)
6
2
1
-2
學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image598.gif)
0.63
0.25
0.1
0.02
(2)學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image600.gif)
(3)設(shè)技術(shù)革新后的三等品率為
,則此時1件產(chǎn)品的平均利潤為
學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image603.gif)
依題意,
,即
,解得
所以三等品率最多為學(xué)模擬試題一%20%20%20%20%20數(shù)學(xué).files/image611.gif)
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com