題目列表(包括答案和解析)
已知函數(shù)
,
.
(Ⅰ)若函數(shù)
和函數(shù)
在區(qū)間
上均為增函數(shù),求實(shí)數(shù)
的取值范圍;
(Ⅱ)若方程
有唯一解,求實(shí)數(shù)
的值.
【解析】第一問(wèn),
當(dāng)0<x<2時(shí),
,當(dāng)x>2時(shí),
,
要使
在(a,a+1)上遞增,必須![]()
![]()
如使
在(a,a+1)上遞增,必須
,即![]()
由上得出,當(dāng)
時(shí)
,
在
上均為增函數(shù)
(Ⅱ)中方程
有唯一解
有唯一解
設(shè)
(x>0)
隨x變化如下表
|
x |
|
|
|
|
|
- |
|
+ |
|
|
|
極小值 |
|
由于在
上,
只有一個(gè)極小值,![]()
的最小值為-24-16ln2,
當(dāng)m=-24-16ln2時(shí),方程
有唯一解得到結(jié)論。
(Ⅰ)解:
當(dāng)0<x<2時(shí),
,當(dāng)x>2時(shí),
,
要使
在(a,a+1)上遞增,必須![]()
![]()
如使
在(a,a+1)上遞增,必須
,即![]()
由上得出,當(dāng)
時(shí)
,
在
上均為增函數(shù) ……………6分
(Ⅱ)方程
有唯一解
有唯一解
設(shè)
(x>0)
隨x變化如下表
|
x |
|
|
|
|
|
- |
|
+ |
|
|
|
極小值 |
|
由于在
上,
只有一個(gè)極小值,![]()
的最小值為-24-16ln2,
當(dāng)m=-24-16ln2時(shí),方程
有唯一解
已知函數(shù)
在
取得極值
(1)求
的單調(diào)區(qū)間(用
表示);
(2)設(shè)
,
,若存在
,使得
成立,求
的取值范圍.
【解析】第一問(wèn)利用![]()
![]()
根據(jù)題意
在
取得極值, ![]()
對(duì)參數(shù)a分情況討論,可知
當(dāng)
即
時(shí)遞增區(qū)間:
遞減區(qū)間:
,
![]()
當(dāng)
即
時(shí)遞增區(qū)間:
遞減區(qū)間:
,
![]()
第二問(wèn)中,
由(1)知:
在
,
![]()
,![]()
在
![]()
![]()
從而求解。
解: ![]()
…..3分
在
取得極值,
……………………..4分
(1) 當(dāng)
即
時(shí) 遞增區(qū)間:
遞減區(qū)間:
,
![]()
當(dāng)
即
時(shí)遞增區(qū)間:
遞減區(qū)間:
,
………….6分
(2)
由(1)知:
在
,
![]()
,![]()
在
![]()
……………….10分
, 使
成立
![]()
![]()
![]()
得: ![]()
已知數(shù)列
滿足
(I)求數(shù)列
的通項(xiàng)公式;
(II)若數(shù)列
中
,前
項(xiàng)和為
,且
證明:
![]()
【解析】第一問(wèn)中,利用
,![]()
∴數(shù)列{
}是以首項(xiàng)a1+1,公比為2的等比數(shù)列,即
![]()
第二問(wèn)中,
![]()
進(jìn)一步得到得
即![]()
即
是等差數(shù)列.
然后結(jié)合公式求解。
解:(I) 解法二、
,![]()
∴數(shù)列{
}是以首項(xiàng)a1+1,公比為2的等比數(shù)列,即
![]()
(II)
………②
由②可得:
…………③
③-②,得
即
…………④
又由④可得
…………⑤
⑤-④得![]()
即
是等差數(shù)列.
![]()
![]()
![]()
![]()
函數(shù)
在同一個(gè)周期內(nèi),當(dāng)
時(shí),
取最大值1,當(dāng)
時(shí),
取最小值
。
(1)求函數(shù)的解析式![]()
(2)函數(shù)
的圖象經(jīng)過(guò)怎樣的變換可得到
的圖象?
(3)若函數(shù)
滿足方程
求在
內(nèi)的所有實(shí)數(shù)根之和.
【解析】第一問(wèn)中利用![]()
又因![]()
又
函數(shù)![]()
第二問(wèn)中,利用
的圖象向右平移
個(gè)單位得
的圖象
再由
圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的
.縱坐標(biāo)不變,得到
的圖象,
第三問(wèn)中,利用三角函數(shù)的對(duì)稱性,
的周期為![]()
在
內(nèi)恰有3個(gè)周期,
并且方程
在
內(nèi)有6個(gè)實(shí)根且![]()
同理,
可得結(jié)論。
解:(1)![]()
又因![]()
又
函數(shù)![]()
(2)
的圖象向右平移
個(gè)單位得
的圖象
再由
圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的
.縱坐標(biāo)不變,得到
的圖象,
(3)
的周期為![]()
在
內(nèi)恰有3個(gè)周期,
并且方程
在
內(nèi)有6個(gè)實(shí)根且![]()
同理,![]()
故所有實(shí)數(shù)之和為![]()
1.D

2.C 提示:畫出滿足條件A∪B=A∪C的文氏圖,可知有五種情況,以觀察其中一種,如圖,顯然只要圖中陰影部分相等,B、C未必要相等,條件A∪B=A∪C仍可滿足,對(duì)照四個(gè)選擇支,A、B、D均可排除,故選C.
3.D
4.B 提示:由題意知,
M,
N,因此,
(
),又A∩B=
,故集合A、B的子集中沒(méi)有相同的集合,可知M、N中沒(méi)有其他的公共元素,故正確的答案是M∩N=
.
5.A 提示:由
得
,當(dāng)
時(shí),△
,
得
,當(dāng)
時(shí),△
,且
,即
所以
6.A 7.D 8.A
9.D提示:設(shè)3x2-4x-32<0的一個(gè)必要不充分條件是為Q,P=
.由題意知:P能推出Q,但Q不能推出P.也可理解為:P
Q.
10.A 11.B
12.D 提示:由
,又因?yàn)?sub>
是
的充分而不必要條件,所以
,即
?芍狝=
或方程
的兩根要在區(qū)間[1,2]內(nèi),也即以下兩種情況:
(1)
;
(2)
;綜合(1)、(2)可得
。
二、填空題
13.3 14.
w.w.w.k.s.5.u.c.o.m
15. -2≤x≤6 提示:由[x]2-3[x]-10≤0得-2≤[x] ≤5,則-2≤x≤6. 16. ①④
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com