題目列表(包括答案和解析)
在
中,
,分別是角
所對邊的長,
,且![]()
(1)求
的面積;
(2)若
,求角C.
【解析】第一問中,由
又∵
∴
∴
的面積為![]()
第二問中,∵a =7 ∴c=5由余弦定理得:
得到b的值,然后又由余弦定理得:
又C為內(nèi)角 ∴![]()
解:(1)
………………2分
又∵
∴
……………………4分
∴
的面積為
……………………6分
(2)∵a =7 ∴c=5 ……………………7分
由余弦定理得:
∴
……………………9分
又由余弦定理得:
又C為內(nèi)角 ∴
……………………12分
另解:由正弦定理得:
∴
又
∴![]()
已知數(shù)列
是各項均不為0的等差數(shù)列,公差為d,
為其前n項和,且滿足
,
.數(shù)列
滿足
,
,
為數(shù)列
的前n項和.
(1)求數(shù)列
的通項公式
和數(shù)列
的前n項和
;
(2)若對任意的
,不等式
恒成立,求實數(shù)
的取值范圍;
(3)是否存在正整數(shù)![]()
,使得
成等比數(shù)列?若存在,求出所有
的值;若不存在,請說明理由.
【解析】第一問利用在
中,令n=1,n=2,
得
即
解得
,,
[
又
時,
滿足
,![]()
,
![]()
第二問,①當n為偶數(shù)時,要使不等式
恒成立,即需不等式
恒成立.
,等號在n=2時取得.
此時
需滿足
.
②當n為奇數(shù)時,要使不等式
恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時
取得最小值-6.
此時
需滿足
.
第三問
,
若
成等比數(shù)列,則
,
即. ![]()
由
,可得
,即
,
. ![]()
(1)(法一)在
中,令n=1,n=2,
得
即
解得
,,
[
又
時,
滿足
,![]()
,
.
(2)①當n為偶數(shù)時,要使不等式
恒成立,即需不等式
恒成立.
,等號在n=2時取得.
此時
需滿足
.
②當n為奇數(shù)時,要使不等式
恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時
取得最小值-6.
此時
需滿足
.
綜合①、②可得
的取值范圍是
.
(3)
,
若
成等比數(shù)列,則
,
即. ![]()
由
,可得
,即
,
. ![]()
又
,且m>1,所以m=2,此時n=12.
因此,當且僅當m=2,
n=12時,數(shù)列
中的
成等比數(shù)列
在本次數(shù)學期中考試試卷中共有10道選擇題,每道選擇題有4個選項,其中只有一個是正確的。評分標準規(guī)定:“每題只選一項,答對得5分,不答或答錯得0分”.某考生每道題都給出一個答案, 且已確定有7道題的答案是正確的,而其余題中,有1道題可判斷出兩個選項是錯誤的,有一道可以判斷出一個選項是錯誤的,還有一道因不了解題意只能亂猜。試求出該考生:
(1)選擇題得滿分(50分)的概率;
(2)選擇題所得分數(shù)
的數(shù)學期望。
【解析】第一問總利用獨立事件的概率乘法公式得分為50分,10道題必須全做對.在其余的3道題中,有1道題答對的概率為
,有1道題答對的概率為
,還有1道答對的概率為
,
所以得分為50分的概率為: ![]()
第二問中,依題意,該考生得分的范圍為{35,40,45,50}
得分為35分表示只做對了7道題,其余各題都做錯,
所以概率為
得分為40分的概率為:
同理求得,得分為45分的概率為:
得分為50分的概率為:![]()
得到分布列和期望值。
解:(1)得分為50分,10道題必須全做對.在其余的3道題中,有1道題答對的概率為
,有1道題答對的概率為
,還有1道答對的概率為
,
所以得分為50分的概率為:
…………5分
(2)依題意,該考生得分的范圍為{35,40,45,50} …………6分
得分為35分表示只做對了7道題,其余各題都做錯,
所以概率為
…………7分
得分為40分的概率為:
…………8分
同理求得,得分為45分的概率為:
…………9分
得分為50分的概率為:
…………10分
所以得分
的分布列為
|
|
35 |
40 |
45 |
50 |
|
|
|
|
|
|
數(shù)學期望![]()
為了解某班學生喜愛打羽毛球是否與性別有關,對本班50人進行了問卷調(diào)查得到了如下的列聯(lián)表:
|
|
喜愛打羽毛球 |
不喜愛打羽毛球 |
合計 |
|
男生 |
|
5 |
|
|
女生 |
10 |
|
|
|
|
|
|
50 |
已知在全部50人中隨機抽取1人抽到不喜愛打羽毛球的學生的概率![]()
(1)請將上面的列聯(lián)表補充完整;
(2)是否有99.5%的把握認為喜愛打羽毛球與性別有關?說明你的理由;
(3)已知喜愛打羽毛球的10位女生中,
還喜歡打籃球,
還喜歡打乒乓球,
還喜歡踢足球,現(xiàn)在從喜歡打籃球、喜歡打乒乓球、喜歡踢足球的6位女生中各選出1名進行其他方面的調(diào)查,求女生
和
不全被選中的概率.下面的臨界值表供參考:
|
|
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
|
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(參考公式:
其中
.)
【解析】第一問利用數(shù)據(jù)寫出列聯(lián)表
第二問利用公式
計算的得到結論。
第三問中,從6位女生中選出喜歡打籃球、喜歡打乒乓球、喜歡踢足球的各1名,其一切可能的結果組成的基本事件如下:
,
,![]()
基本事件的總數(shù)為8
用
表示“
不全被選中”這一事件,則其對立事件
表示“
全被選中”這一事件,由于
由
2個基本事件由對立事件的概率公式得![]()
解:(1) 列聯(lián)表補充如下:
|
|
喜愛打羽毛球 |
不喜愛打羽毛球 |
合計 |
|
男生 |
20 |
5 |
25 |
|
女生 |
10 |
15 |
25 |
|
合計 |
30 |
20 |
50 |
(2)∵![]()
∴有99.5%的把握認為喜愛打籃球與性別有關
(3)從6位女生中選出喜歡打籃球、喜歡打乒乓球、喜歡踢足球的各1名,其一切可能的結果組成的基本事件如下:
,
,![]()
基本事件的總數(shù)為8,
用
表示“
不全被選中”這一事件,則其對立事件
表示“
全被選中”這一事件,由于
由
2個基本事件由對立事件的概率公式得
.
已知
是等差數(shù)列,其前n項和為Sn,
是等比數(shù)列,且
,
.
(Ⅰ)求數(shù)列
與
的通項公式;
(Ⅱ)記
,
,證明
(
).
【解析】(1)設等差數(shù)列
的公差為d,等比數(shù)列
的公比為q.
由
,得
,
,
.
由條件,得方程組
,解得![]()
所以
,
,
.
(2)證明:(方法一)
由(1)得
①
②
由②-①得
![]()
![]()
![]()
而![]()
故
,![]()
(方法二:數(shù)學歸納法)
① 當n=1時,
,
,故等式成立.
② 假設當n=k時等式成立,即
,則當n=k+1時,有:
![]()
![]()
![]()
![]()
![]()
![]()
即
,因此n=k+1時等式也成立
由①和②,可知對任意
,
成立.
一、選擇題
1.B 2.A 3.C 4.C 5.A6.D 7.C10.B11.C
w.w.w.k.s.5.u.c.o.m

國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com