欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

7.已知圓M:被圓M截得的弦長(zhǎng)為等于 查看更多

 

題目列表(包括答案和解析)

已知圓(mR)

(1)求證:不論m為何值,圓心在同一直線l上.

(2)l平行的直線中,哪些與圓相交、相切、相離.

(3)求證:任何一條平行于直線l且與圓相交的直線被圓截得的弦長(zhǎng)相等.

查看答案和解析>>

已知圓(mÎ R),

(1)求證不論m為何值,圓心在同一直線l上.

(2)l平行的直線中,哪些與圓相交、相切、相離.

(3)求證:任何一條平行l且與圓相交的直線被圓截得的弦長(zhǎng)相等.

查看答案和解析>>

已知圓(m∈R)

(1)求證:不論m為何值,圓心在同一直線l上.

(2)與l平行的直線中,哪些與圓相交、相切、相離.

(3)求證:任何一條平行于直線l且與圓相交的直線被圓截得的弦長(zhǎng)相等.

查看答案和解析>>

已知圓(mÎ R)

(1)求證不論m為何值,圓心在同一直線l上.

(2)與l平行的直線中,哪些與圓相交、相切、相離.

(3)求證:任何一條平行l且與圓相交的直線被圓截得的弦長(zhǎng)相等.

查看答案和解析>>

已知圓C:x2+y2-6mx-2(m-1)y+10m2-2m-24=0,求證:
(1)無(wú)論m為何值,圓心都在同一直線l上;
(2)任一條平行于l的直線,若與圓相交,則被各圓所截得的弦長(zhǎng)都相等.

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分。

1―5 ADBBA    6―10 DDCBC    11―12 CA

二、填空題:本大題共4小題,每小題5分,共20分。

13.300    14.    15.    16.②④

三、解答題:本大題共6小題,滿分70分。

17.(本小題滿分10分)

   (I)解:

時(shí),

   ………………2分

   ………………4分

, 

  ………………5分

   (II)解:

18.(本小題滿分12分)

   (I)解:

   (II)解:

由(I)知:

   (III)解:

    <p id="9a5oc"><strike id="9a5oc"></strike></p>
      <p id="9a5oc"><input id="9a5oc"></input></p>
      <rp id="9a5oc"></rp>

      19.(本小題滿分12分)

      解法一:

         (I)證明

      如圖,連結(jié)AC,AC交BD于點(diǎn)G,連結(jié)EG。

      ∵ 底面ABCD是正方形,

      ∴ G為AC的中點(diǎn).

      又E為PC的中點(diǎn),

      ∴EG//PA。

      ∵EG平面EDB,PA平面EDB,

      ∴PA//平面EDB   ………………4分

         (II)證明:

      ∵ PD⊥底面ABCD,∴PD⊥DB,PD⊥DC,PD⊥DB。

      又∵BC⊥DC,PD∩DC=D,

      ∴BC⊥平面PDC。

      ∴PC是PB在平面PDC內(nèi)的射影。

      ∵PD⊥DC,PD=DC,點(diǎn)E是PC的中點(diǎn),

      ∴DE⊥PC。

      由三垂線定理知,DE⊥PB。

      ∵DE⊥PB,EF⊥PB,DE∩EF=E,

      ∴PB⊥平面EFD。   …………………………8分

         (III)解:

      ∵PB⊥平面EFD,

      ∴PB⊥FD。

      又∵EF⊥PB,F(xiàn)D∩EF=F,

      ∴∠EFD就是二面角C―PB―D的平面角!10分

      ∵PD=DC=BC=2,

      ∴PC=DB=

      ∵PD⊥DB,

      由(II)知:DE⊥PC,DE⊥PB,PC∩PB=P,

      ∴DE⊥平面PBC。

      ∵EF平面PBC,

      ∴DE⊥EF。

      ∴∠EFD=60°。

      故所求二面角C―PB―D的大小為60°。  ………………12分

      解法二:

      如圖,以點(diǎn)D為坐標(biāo)原點(diǎn),DA、DC、DP所在直線分別為x軸、y軸、z軸,

      建立空間直角坐標(biāo)系,得以下各點(diǎn)坐標(biāo):D(0,0,0),A(2,0,0),B(2,2,0),

      C(0,2,0),P(0,0,2)   ………………1分

         (I)證明:

      連結(jié)AC,AC交BD于點(diǎn)G,連結(jié)EG。

      ∵ 底面ABCD是正方形,

      ∴ G為AC的中點(diǎn).G點(diǎn)坐標(biāo)為(1,1,0)。

      <abbr id="9a5oc"><input id="9a5oc"></input></abbr>

      高考資源網(wǎng)www.ks5u.com

      ∴PA//平面EDB   ………………4分

         (II)證明:

         (III)解:

      ∵PB⊥平面EFD,

      ∴PB⊥FD。

      又∵EF⊥PB,F(xiàn)D∩EF=F,

      ∴∠EFD就是二面角C―PB―D的平面角!10分

      ∴∠EFD=60°。

      故所求二面角C―PB―D的大小為60°。  ………………12分

      20.(本小題滿分12分)

         (I)解:

      設(shè) “從甲盒內(nèi)取出的2個(gè)球均為黑球”為事件,“從乙盒內(nèi)取出的2個(gè)球均為黑球”為事件.由于事件相互獨(dú)立,所以取出的4個(gè)球均為黑球的概率為

         ………………2分

      ,

      ∴取出的4個(gè)球均為黑球的概率為   ………………5分

         (II)解:設(shè)“從甲盒內(nèi)取出的2個(gè)球均為黑球;從乙盒內(nèi)取出的2個(gè)球中,1個(gè)是黑球,1個(gè)是紅球”為事件,“從乙盒內(nèi)取出的2個(gè)球均為黑球;從甲盒內(nèi)取出的2個(gè)球中,1個(gè)是黑球,1個(gè)是紅球?yàn)槭录﨑。

          ∴取出的“4個(gè)球中恰有3個(gè)黑球”為事件C+D。

      ∵事件C,D互斥,

      ∴取出的4個(gè)球中恰有3個(gè)黑球的概率為

      21.(本小題滿分12分)

         (I)解:

      由題意設(shè)雙曲線S的方程為   ………………2分

      c為它的半焦距,

       

         (II)解:

      22.(本小題滿分12分)

         (I)解:

         (II)解:

         (III)解:

         

       

      w.w.w.k.s.5.u.c.o.m

      www.ks5u.com