題目列表(包括答案和解析)
解::因為
,所以f(1)f(2)<0,因此f(x)在區(qū)間(1,2)上存在零點,又因為y=
與y=-
在(0,+
)上都是增函數(shù),因此
在(0,+
)上是增函數(shù),所以零點個數(shù)只有一個方法2:把函數(shù)
的零點個數(shù)個數(shù)問題轉(zhuǎn)化為判斷方程
解的個數(shù)問題,近而轉(zhuǎn)化成判斷
與
交點個數(shù)問題,在坐標系中畫出圖形
由圖看出顯然一個交點,因此函數(shù)
的零點個數(shù)只有一個
袋中有50個大小相同的號牌,其中標著0號的有5個,標著n號的有n個(n=1,2,…9),現(xiàn)從袋中任取一球,求所取號碼的分布列,以及取得號碼為偶數(shù)的概率.
如圖所示,圓柱的高為2,底面半徑為
,AE、DF是圓柱的兩條母線,過
作圓柱的截面交下底面于
.![]()
(1)求證:
;
(2)若四邊形ABCD是正方形,求證
;
(3)在(2)的條件下,求二面角A-BC-E的平面角的一個三角函數(shù)值。
![]()
【解析】第一問中,利用由圓柱的性質(zhì)知:AD平行平面BCFE
又過
作圓柱的截面交下底面于
.
∥
又AE、DF是圓柱的兩條母線
∥DF,且AE=DF
AD∥EF
第二問中,由線面垂直得到線線垂直。四邊形ABCD是正方形![]()
又![]()
BC、AE是平面ABE內(nèi)兩條相交直線
![]()
![]()
第三問中,設(shè)正方形ABCD的邊長為x,則在![]()
在![]()
由(2)可知:
為二面角A-BC-E的平面角,所以![]()
證明:(1)由圓柱的性質(zhì)知:AD平行平面BCFE
又過
作圓柱的截面交下底面于
.
∥
又AE、DF是圓柱的兩條母線
∥DF,且AE=DF
。粒摹危牛![]()
(2)
四邊形ABCD是正方形![]()
又![]()
BC、AE是平面ABE內(nèi)兩條相交直線
![]()
![]()
(3)設(shè)正方形ABCD的邊長為x,則在![]()
在![]()
由(2)可知:
為二面角A-BC-E的平面角,所以![]()
已知m>1,直線
,橢圓C:
,
、
分別為橢圓C的左、右焦點.
(Ⅰ)當直線過右焦點
時,求直線的方程;
(Ⅱ)設(shè)直線與橢圓C交于A、B兩點,△A![]()
、△B![]()
的重心分別為G、H.若原點O在以線段GH為直徑的圓內(nèi),求實數(shù)m的取值范圍.[
【解析】第一問中因為直線
經(jīng)過點
(
,0),所以
=
,得
.又因為m>1,所以
,故直線的方程為![]()
第二問中設(shè)
,由
,消去x,得
,
則由
,知
<8,且有![]()
由題意知O為![]()
的中點.由
可知
從而
,設(shè)M是GH的中點,則M(
).
由題意可知,2|MO|<|GH|,得到范圍
為了更好地了解鯨的生活習性,某動物保護組織在受傷的鯨身上安裝了電子監(jiān)測裝置,從海岸放歸點A處(如圖所示)把它放歸大海,并沿海岸線由西到東不停地對鯨進行了長達40分鐘的跟蹤觀測,每隔10分鐘踩點測得數(shù)據(jù)如下表(沒鯨沿海面游動),然后又在觀測站B處對鯨進行生活習性的詳細觀測.已知AB=15km,觀測站B的觀測半徑為5km.
![]()
(1)據(jù)表中信息:①計算出鯨沿海岸線方向運動的速度,②度寫出a、近似滿足的關(guān)系式并畫出鯨的運動路線草圖;
(2)若鯨繼續(xù)以(1)②中運行路線運動,試預測,該鯨經(jīng)過多長時間(從放歸時計是時),可進入前方觀測站B的觀測范圍?并求出可持續(xù)觀測的時間.(注
精確到1分鐘)
![]()
| 4 |
| 5 |
| 1 |
| 5 |
| 1 |
| 5 |
| 4 |
| 5 |
| 4 |
| 5 |
| 1 |
| 5 |
| 4 |
| 5 |
| 1 |
| 5 |
| 4 |
| 5 |
| 1 |
| 5 |
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com