題目列表(包括答案和解析)
(本題滿分14分)
已知實(shí)數(shù)
,曲線
與直線
的交點(diǎn)為
(異于原點(diǎn)
),在曲線
上取一點(diǎn)
,過點(diǎn)
作
平行于
軸,交直線
于點(diǎn)
,過點(diǎn)
作
平行于
軸,交曲線
于點(diǎn)
,接著過點(diǎn)
作
平行于
軸,交直線
于點(diǎn)
,過點(diǎn)
作
平行于
軸,交曲線
于點(diǎn)
,如此下去,可以得到點(diǎn)
,
,…,
,… . 設(shè)點(diǎn)
的坐標(biāo)為
,
.
(Ⅰ)試用
表示
,并證明
;
(Ⅱ)試證明
,且
(
);
(本題滿分14分)
已知函數(shù)
圖象上一點(diǎn)
處的切線方程為
.
(Ⅰ)求
的值;
(Ⅱ)若方程
在
內(nèi)有兩個(gè)不等實(shí)根,求
的取值范圍(其中
為自然對(duì)數(shù)的底數(shù));
(Ⅲ)令
,若
的圖象與
軸交于
,
(其中
),
的中點(diǎn)為
,求證:
在
處的導(dǎo)數(shù)
.
(本題滿分14分)
已知曲線
方程為
,過原點(diǎn)O作曲線
的切線![]()
(1)求
的方程;
(2)求曲線
,
及
軸圍成的圖形面積S;
(本題滿分14分)
已知中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸的橢圓,左焦點(diǎn)
,一個(gè)頂點(diǎn)坐標(biāo)為(0,1)
(1)求橢圓方程;
(2)直線
過橢圓的右焦點(diǎn)
交橢圓于A、B兩點(diǎn),當(dāng)△AOB面積最大時(shí),求直線
方程。
(本題滿分14分)
如圖,在直三棱柱
中,
,
,求二面角
的大小。
![]()
![]()
1.A 2.B 3.C 4.C 5.A 6.C 7.D 8.D 9.A 10.C
11.80 12.30 13.c 14.
15.
.
三、解答題
16.解:(1)(ka+b)2=3(a-kb)2 k2++2ka?b=3(1+k2-2ka?b)
∴a?b=
當(dāng)k=1時(shí)取等號(hào). (6分)
(2)a?b=2009年高三年級(jí)檢測(cè)試題(一)--數(shù)學(xué)文科.files/image089.gif)
2009年高三年級(jí)檢測(cè)試題(一)--數(shù)學(xué)文科.files/image091.gif)
∴
時(shí),a?b=取最大值1. (12分)
17.解:(1)由已知有xn+1-1=2(xn-1)
∴{xn-1}是以1為首項(xiàng)以2為公比的等比數(shù)列,又x1=2.
∴xn-1=2n-1 ∴xn=1+2n-1(n∈N*) (6分)
(2)由2009年高三年級(jí)檢測(cè)試題(一)--數(shù)學(xué)文科.files/image095.gif)
又當(dāng)n∈N*時(shí),xn≥2故點(diǎn)(xn,yn)在射線x+y=3(xn≥2)上。 (12分)
18.解:(1)記乙勝為事件A,則P(A)=2009年高三年級(jí)檢測(cè)試題(一)--數(shù)學(xué)文科.files/image097.gif)
|