題目列表(包括答案和解析)
已知數(shù)列
滿(mǎn)足
(I)求數(shù)列
的通項(xiàng)公式;
(II)若數(shù)列
中
,前
項(xiàng)和為
,且
證明:
![]()
【解析】第一問(wèn)中,利用
,![]()
∴數(shù)列{
}是以首項(xiàng)a1+1,公比為2的等比數(shù)列,即
![]()
第二問(wèn)中,
![]()
進(jìn)一步得到得
即![]()
即
是等差數(shù)列.
然后結(jié)合公式求解。
解:(I) 解法二、
,![]()
∴數(shù)列{
}是以首項(xiàng)a1+1,公比為2的等比數(shù)列,即
![]()
(II)
………②
由②可得:
…………③
③-②,得
即
…………④
又由④可得
…………⑤
⑤-④得![]()
即
是等差數(shù)列.
![]()
![]()
![]()
![]()
已知曲線(xiàn)
的參數(shù)方程是
(
是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)
:的極坐標(biāo)方程是
=2,正方形ABCD的頂點(diǎn)都在
上,且A,B,C,D依逆時(shí)針次序排列,點(diǎn)A的極坐標(biāo)為(2,
).
(Ⅰ)求點(diǎn)A,B,C,D的直角坐標(biāo);
(Ⅱ)設(shè)P為
上任意一點(diǎn),求
的取值范圍.
【命題意圖】本題考查了參數(shù)方程與極坐標(biāo),是容易題型.
【解析】(Ⅰ)由已知可得
,
,
,
,
即A(1,
),B(-
,1),C(―1,―
),D(
,-1),
(Ⅱ)設(shè)
,令
=
,
則
=
=
,
∵
,∴
的取值范圍是[32,52]
設(shè)△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,已知a=1,b=2,cosC=. (1)求△ABC的周長(zhǎng); (2)求cos(A-C)的值.
【解析】(1)借助余弦定理求出邊c,直接求周長(zhǎng)即可.(2)根據(jù)兩角差的余弦公式需要求sinC,sinA,cosA,由正弦定理即可求出sinA,進(jìn)而可求出cosA.sinC可由cosA求出,問(wèn)題得解.
設(shè)不等邊三角形ABC的外心與重心分別為M、G,若A(-1,0),B(1,0)且MG//AB.
(Ⅰ)求三角形ABC頂點(diǎn)C的軌跡方程;
(Ⅱ)設(shè)頂點(diǎn)C的軌跡為D,已知直線(xiàn)
過(guò)點(diǎn)(0,1)并且與曲線(xiàn)D交于P、N兩點(diǎn),若O為坐標(biāo)原點(diǎn),滿(mǎn)足OP⊥ON,求直線(xiàn)
的方程.
【解析】
第一問(wèn)因?yàn)樵O(shè)C(x,y)(
)
……3分
∵M(jìn)是不等邊三解形ABC的外心,∴|MA|=|MC|,即
(2)
由(1)(2)得
.所以三角形頂點(diǎn)C的軌跡方程為
,
.…6分
第二問(wèn)直線(xiàn)l的方程為y=kx+1
由
消y得
。 ∵直線(xiàn)l與曲線(xiàn)D交于P、N兩點(diǎn),∴△=
,
又
,
∵
,∴![]()
得到直線(xiàn)方程。
已知函數(shù)
,
,k為非零實(shí)數(shù).
(Ⅰ)設(shè)t=k2,若函數(shù)f(x),g(x)在區(qū)間(0,+∞)上單調(diào)性相同,求k的取值范圍;
(Ⅱ)是否存在正實(shí)數(shù)k,都能找到t∈[1,2],使得關(guān)于x的方程f(x)=g(x)在[1,5]上有且僅有一個(gè)實(shí)數(shù)根,且在[-5,-1]上至多有一個(gè)實(shí)數(shù)根.若存在,請(qǐng)求出所有k的值的集合;若不存在,請(qǐng)說(shuō)明理由.
【解析】本試題考查了運(yùn)用導(dǎo)數(shù)來(lái)研究函數(shù)的單調(diào)性,并求解參數(shù)的取值范圍。與此同時(shí)還能對(duì)于方程解的問(wèn)題,轉(zhuǎn)化為圖像與圖像的交點(diǎn)問(wèn)題來(lái)長(zhǎng)處理的數(shù)學(xué)思想的運(yùn)用。
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com