題目列表(包括答案和解析)
已知
,
,
分別為
三個(gè)內(nèi)角
,
,
的對(duì)邊,
.
(Ⅰ)求
;
(Ⅱ)若
=2,
的面積為
,求
,
.
【命題意圖】本題主要考查正余弦定理應(yīng)用,是簡(jiǎn)單題.
【解析】(Ⅰ)由
及正弦定理得
![]()
由于
,所以
,
又
,故
.
(Ⅱ)
的面積
=
=
,故
=4,
而
故
=8,解得
=2
在
中,
,分別是角
所對(duì)邊的長(zhǎng),
,且![]()
(1)求
的面積;
(2)若
,求角C.
【解析】第一問(wèn)中,由
又∵
∴
∴
的面積為![]()
第二問(wèn)中,∵a =7 ∴c=5由余弦定理得:
得到b的值,然后又由余弦定理得:
又C為內(nèi)角 ∴![]()
解:(1)
………………2分
又∵
∴
……………………4分
∴
的面積為
……………………6分
(2)∵a =7 ∴c=5 ……………………7分
由余弦定理得:
∴
……………………9分
又由余弦定理得:
又C為內(nèi)角 ∴
……………………12分
另解:由正弦定理得:
∴
又
∴![]()
在
中,
是三角形的三內(nèi)角,
是三內(nèi)角對(duì)應(yīng)的三邊,已知
成等差數(shù)列,
成等比數(shù)列
(Ⅰ)求角
的大小;
(Ⅱ)若
,求
的值.
【解析】第一問(wèn)中利用依題意
且
,故![]()
第二問(wèn)中,由題意
又由余弦定理知
![]()
,得到
,所以
,從而得到結(jié)論。
(1)依題意
且
,故
……………………6分
(2)由題意
又由余弦定理知
…………………………9分
即
故![]()
代入
得![]()
![]()
在四棱錐
中,
平面
,底面
為矩形,
.
(Ⅰ)當(dāng)
時(shí),求證:
;
(Ⅱ)若
邊上有且只有一個(gè)點(diǎn)
,使得
,求此時(shí)二面角
的余弦值.
![]()
【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時(shí),底面ABCD為正方形,![]()
![]()
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,
………………2分
又
,得證。
第二問(wèn),建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》
要使
,只要![]()
所以
,即
………6分
由此可知
時(shí),存在點(diǎn)Q使得![]()
當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得![]()
由此知道a=2, 設(shè)平面POQ的法向量為![]()
,所以
平面PAD的法向量![]()
則
的大小與二面角A-PD-Q的大小相等所以![]()
因此二面角A-PD-Q的余弦值為![]()
解:(Ⅰ)當(dāng)
時(shí),底面ABCD為正方形,![]()
![]()
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,
又![]()
………………3分
(Ⅱ) 因?yàn)锳B,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,
![]()
則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使
,只要![]()
所以
,即
………6分
由此可知
時(shí),存在點(diǎn)Q使得![]()
當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得
由此知道a=2,
設(shè)平面POQ的法向量為![]()
,所以
平面PAD的法向量![]()
則
的大小與二面角A-PD-Q的大小相等所以![]()
因此二面角A-PD-Q的余弦值為![]()
在△ABC中,內(nèi)角A、B、C所對(duì)邊的邊長(zhǎng)分別是a、b、c,已知c=2,C=
.
(Ⅰ)若△ABC的面積等于
,求a、b;
(Ⅱ)若
,求△ABC的面積.
【解析】第一問(wèn)中利用余弦定理及已知條件得
又因?yàn)椤鰽BC的面積等于
,所以
,得
聯(lián)立方程,解方程組得
.
第二問(wèn)中。由于
即為即
.
當(dāng)
時(shí),
,
,
,
所以
當(dāng)
時(shí),得
,由正弦定理得
,聯(lián)立方程組
,解得
,得到
。
解:(Ⅰ) (Ⅰ)由余弦定理及已知條件得
,………1分
又因?yàn)椤鰽BC的面積等于
,所以
,得
,………1分
聯(lián)立方程,解方程組得
.
……………2分
(Ⅱ)由題意得![]()
,
即
.
…………2分
當(dāng)
時(shí),
,
,
,
……1分
所以
………………1分
當(dāng)
時(shí),得
,由正弦定理得
,聯(lián)立方程組
,解得
,
;
所以![]()
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com