題目列表(包括答案和解析)
已知正項(xiàng)數(shù)列
的前n項(xiàng)和
滿足:
,
(1)求數(shù)列
的通項(xiàng)
和前n項(xiàng)和
;
(2)求數(shù)列
的前n項(xiàng)和
;
(3)證明:不等式
對任意的
,
都成立.
【解析】第一問中,由于
所以![]()
兩式作差
,然后得到![]()
從而
得到結(jié)論
第二問中,
利用裂項(xiàng)求和的思想得到結(jié)論。
第三問中,![]()
![]()
又![]()
結(jié)合放縮法得到。
解:(1)∵
∴![]()
∴![]()
∴
∴
………2分
又∵正項(xiàng)數(shù)列
,∴
∴
又n=1時,![]()
∴
∴數(shù)列
是以1為首項(xiàng),2為公差的等差數(shù)列……………3分
∴
…………………4分
∴
…………………5分
(2)
…………………6分
∴![]()
…………………9分
(3)![]()
…………………12分
又![]()
,![]()
∴不等式
對任意的
,
都成立.
已知:
,當(dāng)
時,
;
時,![]()
(1)求
的解析式( 6分 )
(2)c為何值時,
的解集為R. ( 6分 )
在
中,
,分別是角
所對邊的長,
,且![]()
(1)求
的面積;
(2)若
,求角C.
【解析】第一問中,由
又∵
∴
∴
的面積為![]()
第二問中,∵a =7 ∴c=5由余弦定理得:
得到b的值,然后又由余弦定理得:
又C為內(nèi)角 ∴![]()
解:(1)
………………2分
又∵
∴
……………………4分
∴
的面積為
……………………6分
(2)∵a =7 ∴c=5 ……………………7分
由余弦定理得:
∴
……………………9分
又由余弦定理得:
又C為內(nèi)角 ∴
……………………12分
另解:由正弦定理得:
∴
又
∴![]()
( 14分)已知函數(shù)
在一個周期內(nèi)的部分函數(shù)圖象如圖所示.
(1)( 6分)函數(shù)
的解析式.
(2)( 4分)函數(shù)
的單調(diào)遞增區(qū)間.
(3) ( 4分)函數(shù)
在區(qū)間
上的最大值和最小值.![]()
( 12分)已知:
、
、
是同一平面內(nèi)的三個向量,其中
=(1,2)
(1)( 6分)若|
|
,且
,求
的坐標(biāo);
(2)( 6分)若|
|=
且
與
垂直,求
與
的夾角
.
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com