欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

分組頻數(shù)頻率 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

分 組

頻數(shù)

頻率

[13,14)

[14,15)

[15,16)

[16,17)

[17,18]

某班全部名學生在一次百米測試中,成績?nèi)拷橛?3秒和18秒之間。將測試結(jié)果按如下方式分為五組:第一組[13,14);第二組[14,15);…;第五組[17,18],右表是按上述分組方式得到的頻率分布表。

(1)求及上表中的的值;

(2)設m,n是從第一組或第五組中任意抽取的兩名

 學生的百米測試成績,求事件“”的概率.

查看答案和解析>>

(本小題滿分14分)

某校從參加高一年級期中考試的學生中隨機抽取名學生,將其數(shù)學成績(均為整數(shù))分成六段,后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

(Ⅰ)求分數(shù)在內(nèi)的頻率,并補

全這個頻率分布直方圖;

  (Ⅱ)統(tǒng)計方法中,同一組數(shù)據(jù)常用該

組區(qū)間的中點值作為代表,據(jù)此估計本次

考試的平均分;

(Ⅲ)用分層抽樣的方法在分數(shù)段為

的學生中抽取一個容量為的樣本,

將該樣本看成一個總體,從中任取人,

求至多有人在分數(shù)段的概率.

查看答案和解析>>

(本小題滿分14分)

某校從參加高一年級期中考試的學生中隨機抽取名學生,將其數(shù)學成績(均為整數(shù))分成六段后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

(Ⅰ)求分數(shù)在內(nèi)的頻率,并補

全這個頻率分布直方圖;

  (Ⅱ)統(tǒng)計方法中,同一組數(shù)據(jù)常用該

組區(qū)間的中點值作為代表,據(jù)此估計本次

考試的平均分;

(Ⅲ)用分層抽樣的方法在分數(shù)段為

的學生中抽取一個容量為的樣本,

將該樣本看成一個總體,從中任取人,

求至多有人在分數(shù)段的概率.

查看答案和解析>>

(本小題滿分12分)某班50名學生在一次百米測試中,成績?nèi)拷橛?3秒與18秒之間,將測試結(jié)果按如下方式分成五組:每一組;第二組……,第五組.右圖是按上述分組方法得到的頻率分布直方圖.

   (I)若成績大于或等于14秒且小于16秒認為良好,求該班在這次百米測試中成績良好的人數(shù);

   (II)設、表示該班某兩位同學的百米測試成績,且已知,求事件“”的概率.

查看答案和解析>>

(本小題滿分12分)某班50名學生在一次百米測試中,成績?nèi)拷橛?3秒與18秒之間,將測試結(jié)果按如下方式分成五組:每一組;第二組,……,第五組.右圖是按上述分組方法得到的頻率分布直方圖.

   (I)若成績大于或等于14秒且小于16秒認為良好,求該班在這次百米測試中成績良好的人數(shù);

   (II)設表示該班某兩位同學的百米測試成績,且已知,求事件“”的概率.

查看答案和解析>>

一、選擇題(每題5分,共50分)

題號

1

2

3

4

5

6

7

8

9

10

答案

C

A

A

B

D

B

D

C

D

B

二、填空題(每題5分,共20分,兩空的前一空3分,后一空2分)

11.     12.4   13.   

14.      15.

三、解答題(本大題共6小題,共80分)

16.(本題滿分12分)

如圖A、B是單位圓O上的點,且在第二象限. C是圓與軸正半軸的交點,A點的坐標為,△AOB為正三角形.

(Ⅰ)求; 

(Ⅱ)求.

      第16題圖

      (2)因為三角形AOB為正三角形,所以,

      ,,       -----------------------------6分

      所以=

           -------------------------10分

      =.    --------------------------------------12分

      17、(本題滿分12分)

      如圖,四棱錐的底面是邊長為1的正方形,

      (Ⅰ)求證:平面

      (Ⅱ)求四棱錐的體積.

      (Ⅰ)因為四棱錐的底面是邊長為1的正方形,

      所以,所以              ------------4分

      ,

      所以平面                        --------------------------------------8分

      (Ⅱ)四棱錐的底面積為1,

      因為平面,所以四棱錐的高為1,

      所以四棱錐的體積為.                         --------------------12分

      18.(本小題滿分14分)

      分組

      頻數(shù)

      頻率

      50.5~60.5

      4

      0.08

      60.5~70.5

       

      0.16

      70.5~80.5

      10

       

      80.5~90.5

      16

      0.32

      90.5~100.5

       

       

      合計

      50

       

      為了讓學生了解環(huán)保知識,增強環(huán)保意識,某中學舉行了一次“環(huán)保知識競賽”,共有900名學生參加了這次競賽. 為了解本次競賽成績情況,從中抽取了部分學生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計. 請你根據(jù)尚未完成并有局部污損的頻率分布表和頻數(shù)分布直方圖,解答下列問題:

       

       

       

       

       

       

       

       

       

       

       

      (Ⅰ)填充頻率分布表的空格(將答案直接填在表格內(nèi));

      (Ⅱ)補全頻數(shù)條形圖;

      (Ⅲ)若成績在75.5~85.5分的學生為二等獎,問獲得二等獎的學生約為多少人?

      解:(1)

      分組

      頻數(shù)

      頻率

      50.5~60.5

      4

      0.08

      60.5~70.5

      8

      0.16

      70.5~80.5

      10

      0.20

      80.5~90.5

      16

      0.32

      90.5~100.5

      12

      0.24

      合計

      50

      1.00

       

       

       

       

       

       

       

      ---------------------4分

      (2) 頻數(shù)直方圖如右上所示--------------------------------8分

      (3) 成績在75.5~80.5分的學生占70.5~80.5分的學生的,因為成績在70.5~80.5分的學生頻率為0.2 ,所以成績在76.5~80.5分的學生頻率為0.1 ,---------10分

      成績在80.5~85.5分的學生占80.5~90.5分的學生的,因為成績在80.5~90.5分的學生頻率為0.32 ,所以成績在80.5~85.5分的學生頻率為0.16  -------------12分

      所以成績在76.5~85.5分的學生頻率為0.26,

      由于有900名學生參加了這次競賽,

      所以該校獲得二等獎的學生約為0.26´900=234(人)       ------------------14分

      19.(本小題滿分14分)

      拋物線的準線的方程為,該拋物線上的每個點到準線的距離都與到定點N的距離相等,圓N是以N為圓心,同時與直線 相切的圓,

      (Ⅰ)求定點N的坐標;

      (Ⅱ)是否存在一條直線同時滿足下列條件:

      分別與直線交于A、B兩點,且AB中點為;

      被圓N截得的弦長為2;

      解:(1)因為拋物線的準線的方程為

      所以,根據(jù)拋物線的定義可知點N是拋物線的焦點,             -----------2分

      所以定點N的坐標為                              ----------------------------3分

      (2)假設存在直線滿足兩個條件,顯然斜率存在,                -----------4分

      的方程為,                   ------------------------5分

      以N為圓心,同時與直線 相切的圓N的半徑為, ----6分

      方法1:因為被圓N截得的弦長為2,所以圓心到直線的距離等于1,   -------7分

      ,解得,                -------------------------------8分

      時,顯然不合AB中點為的條件,矛盾!            --------------9分

      時,的方程為               ----------------------------10分

      ,解得點A坐標為,               ------------------11分

      ,解得點B坐標為,          ------------------12分

      顯然AB中點不是,矛盾!                ----------------------------------13分

      所以不存在滿足條件的直線.                 ------------------------------------14分

      方法2:由,解得點A坐標為,      ------7分

      ,解得點B坐標為,        ------------8分

      因為AB中點為,所以,解得,     ---------10分

      所以的方程為,

      圓心N到直線的距離,                   -------------------------------11分

      因為被圓N截得的弦長為2,所以圓心到直線的距離等于1,矛盾!   ----13分

      所以不存在滿足條件的直線.               -------------------------------------14分

      方法3:假設A點的坐標為,

      因為AB中點為,所以B點的坐標為,         -------------8分

      又點B 在直線上,所以,                ----------------------------9分

      所以A點的坐標為,直線的斜率為4,

      所以的方程為,                    -----------------------------10分

      圓心N到直線的距離,                     -----------------------------11分

      因為被圓N截得的弦長為2,所以圓心到直線的距離等于1,矛盾! ---------13分

      所以不存在滿足條件的直線.              ----------------------------------------14分

      20.(本小題滿分14分)

      觀察下列三角形數(shù)表

                               1            -----------第一行

                             2    2         -----------第二行

                           3   4    3       -----------第三行

                         4   7    7   4     -----------第四行

                       5   11  14  11   5

      …    …      …      …

                …    …    …     …      …

      假設第行的第二個數(shù)為,

      (Ⅰ)依次寫出第六行的所有個數(shù)字;

      (Ⅱ)歸納出的關系式并求出的通項公式;

      (Ⅲ)設求證:

      解:(1)第六行的所有6個數(shù)字分別是6,16,25,25,16,6; --------------2分

      (2)依題意   -------------------------------5分

          ------------------------7分

      ,

      所以;    -------------------------------------9分

      (3)因為所以  -------------11分

      ---14分

      21.(本小題滿分14分)

      已知函數(shù)取得極小值.

      (Ⅰ)求a,b的值;

      (Ⅱ)設直線. 若直線l與曲線S同時滿足下列兩個條件:(1)直線l與曲線S相切且至少有兩個切點;(2)對任意xR都有. 則稱直線l為曲線S的“上夾線”.

      試證明:直線是曲線的“上夾線”.

      解:(I)因為,所以                        ---------------1分

                        -------------------------------2分

      解得,      --------------------------------------------------------------------3分

      此時

      ,當,                   -------------------------5分

      所以取極小值,所以符合題目條件;                  ----------------6分

      (II)由

      時,,此時,,

      ,所以是直線與曲線的一個切點;                     -----------8分

      時,,此時,,

      ,所以是直線與曲線的一個切點;                     -----------10分

      所以直線l與曲線S相切且至少有兩個切點;

      對任意xR,,

      所以      ---------------------------------------------------------------------13分

      因此直線是曲線的“上夾線”.     ----------14分