欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

若存在實數(shù)a∈[1,3],使得不等式ax2+(a-2)x-2>0成立,則實數(shù)x的取值范圍是

A.(-∞,-1)∪(2,+∞)
B.[-1,]
C.(-∞,-1)∪(,+∞)
D.(-1,2)
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:期末題 題型:單選題

若存在實數(shù)a∈[1,3],使得不等式ax2+(a-2)x-2>0成立,則實數(shù)x的取值范圍是
[     ]
A.(-∞,-1)∪(2,+∞)
B.[-1,]
C.(-∞,-1)∪(,+∞)
D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若存在實數(shù)a∈R,使得不等式 x|x-a|+b<0對于任意的x∈[0,1]都成立,則實數(shù)b的取值范圍是
b<-3+2
2
b<-3+2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:陜西省西安市第一中學(xué)2012屆高三上學(xué)期期中考試數(shù)學(xué)文科試題 題型:022

若存在α∈[1,3],使得不等式ax2+(a-2)x-2>0成立,則實數(shù)x的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式ax2+bx+c>0的解集為(1,t),記函數(shù)f(x)=ax2+(a-b)x-c.
(1)求證:函數(shù)y=f(x)必有兩個不同的零點.
(2)若函數(shù)y=f(x)的兩個零點分別為m,n,求|m-n|的取值范圍.
(3)是否存在這樣實數(shù)的a、b、c及t,使得函數(shù)y=f(x)在[-2,1]上的值域為[-6,12].若存在,求出t的值及函數(shù)y=f(x)的解析式;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知不等式ax2+bx+c>0的解集為(1,t),記函數(shù)f(x)=ax2+(a-b)x-c.
(1)求證:函數(shù)y=f(x)必有兩個不同的零點;
(2)若函數(shù)y=f(x)的兩個零點分別為m,n,求|m-n|的取值范圍;
(3)是否存在這樣的實數(shù)a,b,c及t使得函數(shù)y=f(x)在[-2,1]上的值域為[-6,12]?若存在,求出t的值及函數(shù)y=f(x)的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知不等式ax2+bx+c>0的解集為(1,t),記函數(shù)f(x)=ax2+(a-b)x-c.
(1)求證:函數(shù)y=f(x)必有兩個不同的零點;
(2)若函數(shù)y=f(x)的兩個零點分別為m,n,求|m-n|的取值范圍;
(3)是否存在這樣的實數(shù)a,b,c及t使得函數(shù)y=f(x)在[-2,1]上的值域為[-6,12]?若存在,求出t的值及函數(shù)y=f(x)的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知不等式ax2+bx+c>0的解集為(1,t),記函數(shù)f(x)=ax2+(a-b)x-c.
(1)求證:函數(shù)y=f(x)必有兩個不同的零點.
(2)若函數(shù)y=f(x)的兩個零點分別為m,n,求|m-n|的取值范圍.
(3)是否存在這樣實數(shù)的a、b、c及t,使得函數(shù)y=f(x)在[-2,1]上的值域為[-6,12].若存在,求出t的值及函數(shù)y=f(x)的解析式;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知不等式ax2+bx+c>0的解集為(1,t),記函數(shù)f(x)=ax2+(a-b)x-c.
(1)求證:函數(shù)y=f(x)必有兩個不同的零點.
(2)若函數(shù)y=f(x)的兩個零點分別為m,n,求|m-n|的取值范圍.
(3)是否存在這樣實數(shù)的a、b、c及t,使得函數(shù)y=f(x)在[-2,1]上的值域為[-6,12].若存在,求出t的值及函數(shù)y=f(x)的解析式;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省臺州中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知不等式ax2+bx+c>0的解集為(1,t),記函數(shù)f(x)=ax2+(a-b)x-c.
(1)求證:函數(shù)y=f(x)必有兩個不同的零點.
(2)若函數(shù)y=f(x)的兩個零點分別為m,n,求|m-n|的取值范圍.
(3)是否存在這樣實數(shù)的a、b、c及t,使得函數(shù)y=f(x)在[-2,1]上的值域為[-6,12].若存在,求出t的值及函數(shù)y=f(x)的解析式;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省臺州中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知不等式ax2+bx+c>0的解集為(1,t),記函數(shù)f(x)=ax2+(a-b)x-c.
(1)求證:函數(shù)y=f(x)必有兩個不同的零點.
(2)若函數(shù)y=f(x)的兩個零點分別為m,n,求|m-n|的取值范圍.
(3)是否存在這樣實數(shù)的a、b、c及t,使得函數(shù)y=f(x)在[-2,1]上的值域為[-6,12].若存在,求出t的值及函數(shù)y=f(x)的解析式;若不存在,說明理由.

查看答案和解析>>


同步練習(xí)冊答案