分析 (1)直接利用待定系數(shù)法求出拋物線的解析式即可;
(2)可將三角形BCF分成兩部分來(lái)求:一部分是三角形PFC,以PF為底邊,以P的橫坐標(biāo)為高即可得出三角形PFC的面積.一部分是三角形PFB,以PF為底邊,以P、B兩點(diǎn)的橫坐標(biāo)差的絕對(duì)值為高,即可求出三角形PFB的面積.然后根據(jù)三角形BCF的面積=三角形PFC的面積+三角形PFB的面積,可求出關(guān)于S、m的函數(shù)關(guān)系式;
(3)PF的長(zhǎng)就是當(dāng)x=m時(shí),根據(jù)直線BC的解析式,可得出E點(diǎn)的坐標(biāo),根據(jù)拋物線的解析式可求出D點(diǎn)的坐標(biāo),然后根據(jù)坐標(biāo)系中兩點(diǎn)的距離公式,可求出DE的長(zhǎng),然后讓PF=DE,即可求出此時(shí)m的值.
解答 解:(1)∵拋物線y=-x2+bx+c與x軸交于A(-1,0)、B(3,0)兩點(diǎn),
∴$\left\{\begin{array}{l}{-1-b+c=0}\\{-9+3b+c=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{b=2}\\{c=3}\end{array}\right.$,
故拋物線解析式為:y=-x2+2x+3;
(2)設(shè)直線BC的函數(shù)關(guān)系式為:y=kx+b(k≠0).
把B(3,0),C(0,3)分別代入得:$\left\{\begin{array}{l}{3k+b=0}\\{b=3}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=1}\\{b=3}\end{array}\right.$.
所以直線BC的函數(shù)關(guān)系式為:y=-x+3.
如圖1,設(shè)直線PF與x軸交于點(diǎn)M,由B(3,0),O(0,0),可得:OB=OM+MB=3.
當(dāng)x=1時(shí),y=-1+3=2,
∴E(1,2).
當(dāng)x=m時(shí),y=-m+3,
∴P(m,-m+3).
在y=-x2+2x+3中,當(dāng)x=1時(shí),y=4.
∴D(1,4)
當(dāng)x=m時(shí),y=-m2+2m+3,
∴F(m,-m2+2m+3)
∴線段DE=4-2=2,
線段PF=-m2+2m+3-(-m+3)=-m2+3m
∴S=S△BCF=S△BPF+S△CPF=$\frac{1}{2}$FP×MO+$\frac{1}{2}$PF×BM=$\frac{1}{2}$(-m2+3m)×3=-$\frac{3}{2}$m2+$\frac{9}{2}$m.![]()
m的變化范圍是:0≤m≤3.
(3)如圖2,在(2)中存在點(diǎn)P,使得四邊形DEPF是平行四邊形.
∵線段DE=4-2=2,
線段PF=-m2+2m+3-(-m+3)=-m2+3m
∵PF∥DE,
∴當(dāng)PF=ED時(shí),四邊形PEDF為平行四邊形.
由-m2+3m=2,解得:m1=2,m2=1(不合題意,舍去).
因此,當(dāng)m=2時(shí),四邊形PEDF為平行四邊形.
點(diǎn)評(píng) 本題主要考查了二次函數(shù)的綜合應(yīng)用,根據(jù)二次函數(shù)得出相關(guān)點(diǎn)的坐標(biāo)和對(duì)稱軸的解析式是解題的基礎(chǔ).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 9 | B. | 9$\sqrt{3}$ | C. | 27 | D. | 27$\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 兩點(diǎn)確定一條直線 | |
| B. | 兩點(diǎn)之間,線段最短 | |
| C. | 經(jīng)過直線外一點(diǎn)有且只有一條直線與已知直線平行 | |
| D. | 如果兩條直線都和第三條直線平行,那么這兩條直線也相互平行 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com