分析 (1)依照題意補(bǔ)全圖形即可;
(2)連接CE,只要證明△ABE≌△CBE即可.
(3)找出EN所掃過(guò)的圖形為四邊形DFCN.根據(jù)正方形以及等腰直角三角形的性質(zhì)可得出BD∥CN,由此得出四邊形DFCN為梯形,再由AB=2,可算出線段CF、DF、CN的長(zhǎng)度,利用梯形的面積公式即可得出結(jié)論.
解答 解:(1)依題意補(bǔ)全圖形,如圖1所示.![]()
(2)證明:連接CE,如圖2所示.![]()
∵四邊形ABCD是正方形,
∴∠BCD=90°,AB=BC,
∴∠ACB=∠ACD=$\frac{1}{2}$∠BCD=45°,
∵∠CMN=90°,CM=MN,
∴∠MCN=45°,
∴∠ACN=∠ACD+∠MCN=90°.
∵在Rt△ACN中,點(diǎn)E是AN中點(diǎn),
∴AE=CE=$\frac{1}{2}$AN.
∵AE=CE,AB=CB,BE=BE,
∴△ABE≌△CBE,
∴∠ABE=∠CBE.
∴點(diǎn)B,E在AC的垂直平分線上,
(3)在
點(diǎn)M沿著線段CD從點(diǎn)C運(yùn)動(dòng)到點(diǎn)D的過(guò)程中,線段EN所掃過(guò)的圖形為四邊形DFCN.
∵∠BDC=45°,∠DCN=45°,
∴BD∥CN,
∴四邊形DFCN為梯形.
∵AB=1,
∴CF=DF=$\frac{1}{2}$BD=$\sqrt{2}$,CN=$\sqrt{2}$CD=2$\sqrt{2}$,
∴S梯形DFCN=$\frac{1}{2}$(DF+CN)•CF=$\frac{1}{2}$( $\sqrt{2}$+2$\sqrt{2}$)×$\sqrt{2}$=3.
故答案為:3.
點(diǎn)評(píng) 本題考查了正方形的性質(zhì)、等腰直角三角形的性質(zhì)、全等三角形的判定和性質(zhì)、平行線的性質(zhì)以及梯形的面積公式,解題的關(guān)鍵是正確尋找全等三角形解決問(wèn)題,學(xué)會(huì)利用特殊位置解決實(shí)際問(wèn)題,屬于中考?jí)狠S題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | m≥-1 | B. | m>-1 | C. | m≤-1 | D. | m<-1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 條形統(tǒng)計(jì)圖 | B. | 扇形統(tǒng)計(jì)圖 | C. | 折線統(tǒng)計(jì)圖 | D. | 頻數(shù)分布直方圖 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 3 | B. | 2 | C. | 4-$\sqrt{7}$ | D. | 4-$\sqrt{5}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{600}{x+50}$=$\frac{400}{x}$ | B. | $\frac{600}{x}$=$\frac{400}{x-50}$ | C. | $\frac{600}{x-50}$=$\frac{400}{x}$ | D. | $\frac{600}{x}$=$\frac{400}{x+50}$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com