分析 (1)先由AM=BM=ABcos45°=3可得CM=2,再由勾股定理可得AC的長(zhǎng);
(2)延長(zhǎng)EF到點(diǎn)G,使得FG=EF,證△BMD≌△AMC得AC=BD,再證△BFG≌△CFE可得BG=CE,∠G=∠E,從而得BD=BG=CE,即可得∠BDG=∠G=∠E.
解答 解:(1)∵∠ABM=45°,AM⊥BM,
∴AM=BM=ABcos45°=3$\sqrt{2}$×$\frac{\sqrt{2}}{2}$=3,
則CM=BC-BM=5-3=2,
∴AC=$\sqrt{A{M}^{2}+C{M}^{2}}$=$\sqrt{{2}^{2}+{3}^{2}}$=$\sqrt{13}$;
(2)延長(zhǎng)EF到點(diǎn)G,使得FG=EF,連接BG.![]()
由DM=MC,∠BMD=∠AMC,BM=AM,
∴△BMD≌△AMC(SAS),
∴AC=BD,
又CE=AC,
因此BD=CE,
由BF=FC,∠BFG=∠EFC,F(xiàn)G=FE,
∴△BFG≌△CFE,
故BG=CE,∠G=∠E,
所以BD=CE=BG,
因此∠BDG=∠G=∠E.
點(diǎn)評(píng) 本題主要考查全等三角形的判定與性質(zhì)及勾股定理、等腰直角三角形的性質(zhì)等知識(shí)點(diǎn),熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 45° | B. | 50° | C. | 55° | D. | 60° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ① | B. | ③ | C. | ②或④ | D. | ①或③ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 5.1米 | B. | 6.3米 | C. | 7.1米 | D. | 9.2米 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | a5+a5=a10 | B. | a7÷a=a6 | C. | a3•a2=a6 | D. | (-a3)2=-a6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com