| A. | AD=AE | B. | DE=$\frac{1}{2}$EC | C. | ∠ADE=∠C | D. | DB=EC |
分析 由DE與BC平行,得到三角形ADE與三角形ABC相似,由相似得比例,根據AB=AC,得到AD=AE,進而確定出DB=EC,再由兩直線平行同位角相等,以及等腰三角形的底角相等,等量代換得到∠ADE=∠C,而DE不一定為中位線,即DE不一定為BC的一半,即可得到正確選項.
解答 解:∵AB=AC,
∴∠B=∠C,
∵DE∥BC,
∴∠ADE=∠B=∠AED=∠C,
∴AE=AD,
∴∠ADE=∠B,
∵AB=AC,
∴AD=AE,DB=EC,
而DE不一定等于$\frac{1}{2}$EC,
故選B.
點評 此題考查了等腰三角形的判定與性質,以及平行線的性質,熟練掌握等腰三角形的判定與性質是解本題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
| A. | 70° | B. | 83° | C. | 68° | D. | 85° |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
| A. | $\sqrt{3}$+$\sqrt{5}$=$\sqrt{8}$ | B. | $\sqrt{8}$-$\sqrt{3}$=$\sqrt{8-3}$ | C. | $\sqrt{3\frac{2}{3}}$=3$\sqrt{\frac{2}{3}}$ | D. | $\frac{\sqrt{2}}{\sqrt{5}}$=$\frac{\sqrt{10}}{5}$ |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com