分析 (1)理解新定義,按照新定義的要求求出兩個距離值;
(2)如答圖2所示,當(dāng)點(diǎn)B落在⊙A上時,m的取值范圍為2≤m≤6:
當(dāng)4≤m≤6,顯然線段BC與線段OA的距離等于⊙A半徑,即d=2;
當(dāng)2≤m<4時,作BN⊥x軸于點(diǎn)N,線段BC與線段OA的距離等于BN長;
(3)①在準(zhǔn)確理解點(diǎn)M運(yùn)動軌跡的基礎(chǔ)上,畫出草圖,如答圖3所示.由圖形可以直觀求出封閉圖形的周長;
②如答圖4所示,符合題意的相似三角形有三個,需要進(jìn)行分類討論,分別利用點(diǎn)的坐標(biāo)關(guān)系以及相似三角形比例線段關(guān)系求出m的值.
解答
解:(1)當(dāng)m=2,n=2時,
如題圖1,線段BC與線段OA的距離(即線段BN的長)=2;
當(dāng)m=5,n=2時,
B點(diǎn)坐標(biāo)為(5,2),線段BC與線段OA的距離,即為線段AB的長,
如答圖1,過點(diǎn)B作BN⊥x軸于點(diǎn)N,則AN=1,BN=2,
在Rt△ABN中,由勾股定理得:AB=$\sqrt{A{N}^{2}+B{N}^{2}}$=$\sqrt{{1}^{2}+{2}^{2}}$=$\sqrt{5}$;
故答案為:2,$\sqrt{5}$;
(2)如答圖2所示,當(dāng)點(diǎn)B落在⊙A上時,m的取值范圍為2≤m≤6:![]()
當(dāng)4≤m≤6,顯然線段BC與線段OA的距離等于⊙A半徑,即d=2;
當(dāng)2≤m<4時,作BN⊥x軸于點(diǎn)N,線段BC與線段OA的距離等于BN長,
ON=m,AN=OA-ON=4-m,在Rt△ABN中,由勾股定理得:
∴d=$\sqrt{{2}^{2}-(4-m)^{2}}$=$\sqrt{4-16+8m-{m}^{2}}$=$\sqrt{-{m}^{2}+8m-12}$.
(3)存在.
∵m≥0,n≥0,∴點(diǎn)M位于第一象限.
∵A(4,0),D(0,2),∴OA=2OD.
如答圖4所示,相似三角形有三種情形:![]()
(I)△AM1H1,此時點(diǎn)M縱坐標(biāo)為2,點(diǎn)H在A點(diǎn)左側(cè).
如圖,OH1=m+2,M1H1=2,AH1=OA-OH1=2-m,
由相似關(guān)系可知,M1H1=2AH1,即2=2(2-m),
∴m=1;
(II)△AM2H2,此時點(diǎn)M縱坐標(biāo)為2,點(diǎn)H在A點(diǎn)右側(cè).
如圖,OH2=m+2,M2H2=2,AH2=OH2-OA=m-2,
由相似關(guān)系可知,M2H2=2AH2,即2=2(m-2),
∴m=3;
(III)△AM3H3,此時點(diǎn)B落在⊙A上.
如圖,OH3=m+2,AH3=OH3-OA=m-2,
過點(diǎn)B作BN⊥x軸于點(diǎn)N,則BN=M3H3=n,AN=m-4,
由相似關(guān)系可知,AH3=2M3H3,即m-2=2n (1)
在Rt△ABN中,由勾股定理得:22=(m-4)2+n2 (2)
由(1)、(2)式解得:m1=$\frac{26}{5}$,m2=2,
當(dāng)m=2時,點(diǎn)M與點(diǎn)A橫坐標(biāo)相同,點(diǎn)H與點(diǎn)A重合,故舍去,
∴m=$\frac{26}{5}$.
綜上所述,存在m的值使以A、M、H為頂點(diǎn)的三角形與△AOD相似,m的取值為:1或3或$\frac{26}{5}$.
點(diǎn)評 本題考查了圓的相關(guān)性質(zhì)、點(diǎn)的坐標(biāo)、勾股定理等重要知識點(diǎn),根據(jù)新定義得出線段之間距離是解決本題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\root{3}{-8}$ | B. | 0 | C. | ($\frac{1}{3}$)-1 | D. | |-$\sqrt{3}$| |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 20 | B. | 24 | C. | 28 | D. | 30 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com