| A. | ($\frac{3}{2}$,3)、(-$\frac{2}{3}$,4) | B. | ($\frac{7}{4},\frac{7}{2}$)、(-$\frac{1}{2},4$) | C. | ($\frac{7}{4},\frac{7}{2}$)、(-$\frac{2}{3},4$) | D. | ($\frac{3}{2},3$)、(-$\frac{1}{2},4$) |
分析 首先過點A作AD⊥x軸于點D,過點B作BE⊥x軸于點E,過點C作CF∥y軸,過點A作AF∥x軸,交點為F,易得△CAF≌△BOE,△AOD∽△OBE,然后由相似三角形的對應邊成比例,求得答案.
解答
解:過點A作AD⊥x軸于點D,過點B作BE⊥x軸于點E,過點C作CF∥y軸,過點A作AF∥x軸,交點為F,延長CA交x軸于點H,
∵四邊形AOBC是矩形,
∴AC∥OB,AC=OB,
∴∠CAF=∠BOE=∠CHO,
在△ACF和△OBE中,
$\left\{\begin{array}{l}{∠F=∠BEO=90°}\\{∠CAF=∠BOE}\\{AC=OB}\end{array}\right.$,
∴△CAF≌△BOE(AAS),
∴BE=CF=4-1=3,
∵∠AOD+∠BOE=∠BOE+∠OBE=90°,
∴∠AOD=∠OBE,
∵∠ADO=∠OEB=90°,
∴△AOD∽△OBE,
∴$\frac{AD}{OE}$=$\frac{OD}{BE}$,
即$\frac{1}{OE}$=$\frac{2}{3}$,
∴OE=$\frac{3}{2}$,
即點B($\frac{3}{2}$,3),
∴AF=OE=$\frac{3}{2}$,
∴點C的橫坐標為:-(2-$\frac{3}{2}$)=-$\frac{1}{2}$,
∴點C(-$\frac{1}{2}$,4).
故選D.
點評 此題考查了矩形的性質(zhì)、全等三角形的判定與性質(zhì)以及相似三角形的判定與性質(zhì).此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應用.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 三條中線的交點 | B. | 三條高的交點 | ||
| C. | 三條內(nèi)角平分線的交點 | D. | 三邊中垂線的交點 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com