| A. | ①正確,②正確 | B. | ①正確,②錯誤 | C. | ①錯誤,②正確 | D. | ①錯誤,②錯誤 |
分析 ①由已知先求出cos∠BFC=$\frac{\sqrt{3}}{2}$,再求出tan∠EDF,即可判斷;
②由S△DEF=$\frac{1}{2}$DF•AD=$\frac{1}{4}$BD•EF,及DE2=BD•EF,可得DF•AD=$\frac{1}{2}$DF2,即DF=2AD.
解答
解:①設(shè)CF=x,DF=y,BC=h.
∵四邊形BFDE是菱形,
∴BF=DF=y,DE∥BF.
∵$\frac{{S}_{矩形ABCD}}{{S}_{四邊形BFDE}}$=$\frac{2+\sqrt{3}}{2}$,
∴$\frac{(x+y)h}{yh}$=$\frac{2+\sqrt{3}}{2}$,
∴$\frac{x}{y}$=$\frac{\sqrt{3}}{2}$,即cos∠BFC=$\frac{\sqrt{3}}{2}$,
∴∠BFC=30°,
∵DE∥BF,
∴∠EDF=∠BFC=30°,
∴tan∠EDF=$\frac{\sqrt{3}}{3}$,
所以①是真命題.
②∵四邊形BFDE是菱形,
∴DF=DE.
∵S△DEF=$\frac{1}{2}$DF•AD=$\frac{1}{4}$BD•EF,
又∵DE2=BD•EF(已知),
∴S△DEF=$\frac{1}{4}$DE2=$\frac{1}{4}$DF2,
∴DF•AD=$\frac{1}{2}$DF2,
∴DF=2AD,
所以②是真命題.
故選:A.
點評 此題考查了矩形的性質(zhì)及菱形的性質(zhì),解題的關(guān)鍵是①先求出∠EDF的余弦函數(shù)值確定其度數(shù),再求出其正切.②用面積法確定.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com