分析 (1)先求出∠AOB的度數(shù),故可判斷出△OAB為等邊三角形,再由A為弧BF中點(diǎn)可得出OA⊥BF,進(jìn)而可得出結(jié)論;
(2)連接AF,AC,根據(jù)弧相等可得出∠C=∠ABF,由圓周角定理可得出∠BAC=90°,再由直角三角形的性質(zhì)得出∠ABG=∠BAG,進(jìn)而可得出結(jié)論.
解答 證明:(1)∵A、F為半圓三等分點(diǎn),
∴∠AOB=$\frac{1}{3}$×180°=60°,
∵OA=OB,
∴△OAB為等邊三角形.
∵A為弧BF中點(diǎn),
∴OA⊥BF,
∴BE平分OA,
∴E為OA中點(diǎn).
(2)連接AF,AC,![]()
∵A為弧BF中點(diǎn),
∴$\widehat{AB}$=$\widehat{AF}$,
∴∠ABF=∠F.
∵$\widehat{AB}$=$\widehat{AB}$,
∴∠C=∠F,
∴∠C=∠ABF.
∵BC為圓O的直徑,
∴∠BAC=90°,
∴∠BAD+∠CAD=90°.
∵AD⊥BC,
∴∠C+∠CAD=90°,
∴∠ABG=∠BAG,
∴AG=BG.
點(diǎn)評(píng) 本題考查的是圓周角定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com