分析 (1)利用同角的余角相等求出∠C=∠BED,再利用“角角邊”證明△ACD和△BED全等,根據(jù)全等三角形對應(yīng)邊相等證明即可;
(2)根據(jù)直角三角形兩銳角互余求出∠FBC,再求出△ABD是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)求出∠ABD=45°,再根據(jù)∠ABE=∠ABD-∠CBF代入數(shù)據(jù)計算即可得解.
解答 (1)證明:∵AD是△ABC一邊上的高,BF⊥AC,
∴∠C+∠CBE=90°,
∠BED+∠CBE=90°,
∴∠C=∠BED,
在△ACD和△BED中,$\left\{\begin{array}{l}{∠C=∠BED}\\{∠ADC=∠BDE=90°}\\{BE=AC}\end{array}\right.$,
∴△ACD≌△BED(AAS),
∴AD=BD;
(2)解:∵BF⊥AC,
∴∠CBF=90°-∠C=90°-65°=25°,
∵AD⊥BC,AD=BD,
∴△ABD是等腰直角三角形,
∴∠ABD=45°,
∴∠ABE=∠ABD-∠CBF=45°-25°=20°.
點評 本題考查了全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),同角的余角相等的性質(zhì),熟練掌握三角形全等的判定方法是解題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com