分析 (1)根據(jù)一組對邊平行且相等的四邊形是平行四邊形,得到四邊形ABFE是平行四邊形,然后根據(jù)平行四邊形的性質(zhì)證得OE=OB,即可證得△AOE和△AOB是友好三角形;
(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中點,則可以求得△ABE、△ABF的面積,根據(jù)S四邊形CDOF=S矩形ABCD-2S△ABF即可求解.
探究:畫出符合條件的兩種情況:①求出四邊形A′DCB是平行四邊形,求出BC和A′D推出∠ACB=90°,根據(jù)三角形面積公式求出即可;
②求出高CQ,再求出△A′DC的面積,即可求出△ABC的面積.
解答 (1)證明:∵四邊形ABCD是矩形,
∴AD∥BC,
∵AE=BF,
∴四邊形ABFE是平行四邊形,
∴OE=OB,
∴△AOE和△AOB是友好三角形.
(2)解:∵△AOE和△DOE是友好三角形,
∴S△AOE=S△DOE,AE=ED=$\frac{1}{2}$AD=6,
∵△AOB與△AOE是友好三角形,
∴S△AOB=S△AOE,OB=OE,
在△AOE與△FOB中,
$\left\{\begin{array}{l}{AE=BF}\\{∠AEO=∠OBF}\\{OB=OE}\end{array}\right.$,
∴△AOE≌△FOB(SAS),
∴S△AOE=S△FOB,
∴S△AOD=S△ABF,
∴S四邊形CDOF=S矩形ABCD-2S△ABF=8×12-2×$\frac{1}{2}$×8×6=48;
探究:
解:分為兩種情況:①如圖1所示,
∵S△ACD=S△BCD.
∴AD=BD=$\frac{1}{2}$AB,
∵沿CD折疊A和A′重合,
∴AD=A′D=$\frac{1}{2}$AB=$\frac{1}{2}$×4=2,
∵△A′CD與△ABC重合部分的面積等于△ABC面積的$\frac{1}{4}$,
∴S△DOC=$\frac{1}{4}$S△ABC=$\frac{1}{2}$S△BDC=$\frac{1}{2}$S△ADC=$\frac{1}{2}$S△A′DC,
∴DO=OB,A′O=CO,
∴四邊形A′DCB是平行四邊形,
∴BC=A′D=2,
過B作BM⊥AC于M,
∵AB=4,∠BAC=30°,
∴BM=$\frac{1}{2}$AB=2=BC,
即C和M重合,
∴∠ACB=90°,
由勾股定理得:AC=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$,
∴△ABC的面積是$\frac{1}{2}$×BC×AC=$\frac{1}{2}$×2×2$\sqrt{3}$=2$\sqrt{3}$;
②如圖2所示,
∵S△ACD=S△BCD.
∴AD=BD=$\frac{1}{2}$AB,
∵沿CD折疊A和A′重合,
∴AD=A′D=$\frac{1}{2}$AB=$\frac{1}{2}$×4=2,
∵△A′CD與△ABC重合部分的面積等于△ABC面積的$\frac{1}{4}$,
∴S△DOC=$\frac{1}{4}$S△ABC=$\frac{1}{2}$S△BDC=$\frac{1}{2}$S△ADC=$\frac{1}{2}$S△A′DC,
∴DO=OA′,BO=CO,
∴四邊形A′BDC是平行四邊形,
∴A′C=BD=2,
過C作CQ⊥A′D于Q,
∵A′C=2,∠DA′C=∠BAC=30°,
∴CQ=$\frac{1}{2}$A′C=1,
∴S△ABC=2S△ADC=2S△A′DC=2×$\frac{1}{2}$×A′D×CQ=2×$\frac{1}{2}$×2×1=2;
即△ABC的面積是2或2$\sqrt{3}$.
點評 本題是四邊形綜合題目,考查了平行四邊形性質(zhì)和判定、全等三角形的判定與性質(zhì)、三角形的面積的計算、勾股定理、含30°角的直角三角形的性質(zhì);本題難度較大,綜合性強,需要進行分類討論才能得出結(jié)果.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com